【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为
,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.
![]()
科目:高中数学 来源: 题型:
【题目】冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在
的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%.现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(2)现在要从年龄较大的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行问卷调查,求第2组恰好抽到1人的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为创建全国文明城市,推出“行人闯红灯系统建设项目”,将针对闯红灯行为进行曝光.交警部门根据某十字路口以往的监测数据,从穿越该路口的行人中随机抽查了
人,得到如图示的列联表:
闯红灯 | 不闯红灯 | 合计 | |
年龄不超过 |
|
|
|
年龄超过 |
|
|
|
合计 |
|
|
|
(1)能否有
的把握认为闯红灯行为与年龄有关?
(2)下图是某路口监控设备抓拍的
个月内市民闯红灯人数的统计图.请建立
与
的回归方程
,并估计该路口
月份闯红灯人数.
![]()
附:![]()
,![]()
|
|
|
|
|
|
|
|
|
|
|
|
参考数据:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
满足
,
.
(1)求
的通项公式;
(2)若
,数列
满足关系式
,求证:数列
的通项公式为
;
(3)设(2)中的数列
的前n项和为
,对任意的正整数n,
恒成立,求实数p的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某知名电商在
双十一购物狂欢节中成交额再创新高,
月
日单日成交额达
亿元.某店主在此次购物狂欢节期间开展了促销活动,为了解买家对此次促销活动的满意情况,随机抽取了参与活动的
位买家,调查了他们的年龄层次和购物满意情况,得到年龄层次的频率分布直方图和“购物评价为满意”的年龄层次频数分布表.年龄层次的频率分布直方图:
![]()
“购物评价为满意”的年龄层次频数分布表:
年龄(岁) |
|
|
|
|
|
频数 |
|
|
|
|
|
(1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);
(2)若年龄在
岁以下的称为“青年买家”,年龄在
岁以上(含
岁)的称为“中年买家”,完成下面的列联表,并判断能否有
的把握认为中、青年买家对此次活动的评价有差异?
评价满意 | 评价不满意 | 合计 | |
中年买家 | |||
青年买家 | |||
合计 |
|
附:参考公式:
.
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某沿海城市的海边有两条相互垂直的直线型公路
、
,海岸边界
近似地看成一条曲线段.为开发旅游资源,需修建一条连接两条公路的直线型观光大道
,且直线
与曲线
有且仅有一个公共点P(即直线与曲线相切),如图所示.若曲线段
是函数
图像的一段,点M到
、
的距离分别为8千米和1千米,点N到
的距离为10千米,点P到
的距离为2千米.以
、
分别为x,y轴建立如图所示的平面直角坐标系
.
![]()
(1)求曲线段
的函数关系式,并指出其定义域;
(2)求直线
的方程,并求出公路
的长度(结果精确到1米).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形
是正方形,
平面
,
,
,
,
,
分别为
,
,
的中点.
![]()
(1)求证:
平面
;
(2)求平面
与平面
所成锐二面角的大小;
(3)在线段
上是否存在一点
,使直线
与直线
所成的角为
?若存在,求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com