精英家教网 > 高中数学 > 题目详情
若f(x)在R上为奇函数,当x>0时,f(x)=x2+x,则f(x)=
 
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:先设x<0,则-x>0,代入f(x)=x2+x并进行化简,再利用f(x)=-f(-x)进行求解.
解答: 解:设x<0,则-x>0,
∵当x>0时,f(x)=x2+x,
∴f(-x)=(-x)2+(-x)=x2-x,
∵f(x)是定义在R上的奇函数,f(0)=0,
∴f(x)=-x2+x,
f(x)=
x2+x,x>0
0,x=0
-x2+x,x<0

故答案为:
x2+x,x>0
0,x=0
-x2+x,x<0
点评:本题考查了函数奇偶性的应用,即根据奇偶性对应的关系式,将所求的函数解析式进行转化,转化到已知范围内进行求解,考查了转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,且x>0时,f(x)=x(1+x3),则x<0时,f(x)=(  )
A、x(1-x3
B、-x(1+x3
C、-x(1-x3
D、x(1+x3

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为12,则直线ax+by+1=0必过定点(  )
A、(
1
3
1
2
)
B、(
1
2
1
3
)
C、(-
1
3
,-
1
2
)
D、(-
1
2
,-
1
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足:2Sn2=an(2Sn-1).
(Ⅰ)求证:数列{
1
Sn
}
是等差数列,并用n表示Sn
(Ⅱ)令bn=
Sn
2n+1
,数列{bn}的前n项和为Tn.求使得2Tn(2n+1)≤m(n2+3)对所有n∈N*都成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,CA⊥x轴于点A(1,0),DB⊥x轴于点B(3,0),直线CD与x轴、y轴分别交于点F、E,S四边形ABCD=4.
(1)若直线CD的解析式为y=kx+3,求k的值;
(2)在(1)条件下,试探索在x轴正半轴上存在几个点P,使△EPF为等腰三角形,并求出这些点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的焦点将长轴分成2:1,则e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是偶函数,当x≥0时,f(x)=2x-4,则不等式f(x-2)>0的解集为(  )
A、{x|x<-2或x>4}
B、{x|x<0或x>4}
C、{x|x<0或x>6}
D、{x|x<-2或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,Z是整数集,集合A={x|x2-x-6≥0,x∈R},则Z∩∁UA中元素的个数为(  )个.
A、4B、5C、6D、7

查看答案和解析>>

同步练习册答案