精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC-A′B′C′中,AB⊥AC,D,E分别是BC,A′B′的中点,AB=AC=2,AA′=4.
(Ⅰ)求证:DE∥平面ACC′A′;
(Ⅱ)求二面角B′-AD-C′的余弦值.
考点:与二面角有关的立体几何综合题,直线与平面平行的判定
专题:空间角
分析:(Ⅰ)取AC的中点F,连结DF,A′F,由已知条件推导出四边形DFA‘E是平行四边形,由此能证明ED∥平面ACC’A′.
(Ⅱ)由题意推导出∠B′DC是二面角B′-AD-C′的平面角,由此能求出二面角B′-AD-C′的余弦值.
解答: (Ⅰ)证明:取AC的中点F,连结DF,A′F,
∵直三棱柱ABC-A′B′C′中,AB⊥BC,D,E分别是BC,A′B′的中点,
∴DF∥AB,A‘F∥AB,∴DF∥A’E,
又∵DF=
1
2
AB
,A‘E=
1
2
AB
,∴DF=A’E,
∴四边形DFA‘E是平行四边形,
∴ED∥平面ACC’A′.
(Ⅱ)由题意,AD⊥BC,AD⊥CC′,BC∩CC′=C,
∴AD⊥平面BB′C‘C,
又∵B′D?平面BB′C’C,C′D?平面BB’C‘C,
∴AD⊥B’D,AD⊥C′D,
∴∠B′DC是二面角B′-AD-C′的平面角,
在△B′DC′中,BD=3
2
,C′D=3
2
,B′C=2
2

∴cos∠B′DC′=
BD2+CD2+BC2
2BD•CD
=
7
9
点评:本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y满足x≥0,x2+(y-2)2=2,则w=
3x2+2xy+3y2
x2+y2
的最大值为(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(
1
ax-1
+
1
2
)•x3(a>0且a≠1).
(1)求函数f(x)的定义域;
(2)讨论f(x)的奇偶性;
(3)若f(x)>0在定义域上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a,b,c,且满足(2c-a)cosB-bcosA=0.
(1)求角B的大小;
(2)若a+c=6,b=2
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,a2=2,
an+an-1
an-1
=
an+1-an
an
(n≥2,n∈N*),求a13

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,证明
a1+a2+…+a2n-1
2n-1
=an(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

一束光线从点A(-1,1)出发,经过直线l:x-y-1=0反射后与圆C:x2+y2-6x-8y+24=0相切,求反射线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正整数数列中,由1开始依次按如下规则取它的项:第一次取1,第二次取2个连续偶数2、4;第三次取3个连续奇数5、7、9;第四次取4个连续偶数10、12、14、16;第五次取5个连续奇数17、19、21、23、25.按此规则一直取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个子数列中,由1开始的第29个数是
 
,第2014个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意两个集合M、N,定义:M-N={x|x∈M且x∉N},M△N=(M-N)∪(N-M),M={y|y=x2,x∈R},N={x|-5≤1-2x≤7},则M△N=
 

查看答案和解析>>

同步练习册答案