精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,a2=2,
an+an-1
an-1
=
an+1-an
an
(n≥2,n∈N*),求a13
考点:数列递推式
专题:计算题,点列、递归数列与数学归纳法
分析:
an+an-1
an-1
=
an+1-an
an
,可得an+1=an(2+
an
an-1
),代入a1=1,a2=2,即可求a13
解答: 解:∵
an+an-1
an-1
=
an+1-an
an

∴an+1=an(2+
an
an-1
),
∵a1=1,a2=2,
∴a3=2×4=8,a4=2×4×6=48,
∴a13=2×4×6×8×10×12×14×16×18×20×22×24=2•12!.
点评:本题考查数列递推式,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是函数y=
x2
4
图象上一点,设点P到直线y=-1的距离为d1,到直线2x+y+10=0的距离为d2,则d1+d2的最小值是(  )
A、4
B、5
C、
11
5
D、11
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增等差数列{an}中,a1+a3+a5=-12,a1•a3•a5=80,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A、B、C的对边,且2bcosC=2a-c.
(Ⅰ)求B;
(Ⅱ)若b=2
3
,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+1)-x.
(Ⅰ)求f(x)的最大值;
(Ⅱ)设g(x)=f(x)-ax2(a≥0),l是曲线y=g(x)的一条切线,证明:曲线y=g(x)上的任意一点都不可能在直线l的上方;
(Ⅲ)求证:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)…[1+
2n
(2n+1+1)(2n+1)
]<e(其中e为自然对数的底数,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABC-A′B′C′中,AB⊥AC,D,E分别是BC,A′B′的中点,AB=AC=2,AA′=4.
(Ⅰ)求证:DE∥平面ACC′A′;
(Ⅱ)求二面角B′-AD-C′的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在(-1,1)上的奇函数且为增函数,若f(1-a)+f(1-a2)>0,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

三个大小相同的力
a
b
c
作用在同一物体P上,使物体P沿
a
方向作匀速运动,设
PA
=
a
PB
=
b
PC
=
c
,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

lg16÷lg
1
16
=
 

查看答案和解析>>

同步练习册答案