精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是(  )
A.$\frac{3π}{4}$B.$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 利用向量垂直的条件,结合向量数量积公式,即可求向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角

解答 解:设向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,
∵|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=${\overline{a}}^{2}$+$\overrightarrow{a}•\overrightarrow{b}$=${\overline{a}}^{2}$+|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cosθ=2+2$\sqrt{2}$cosθ=0,
解得cosθ=-$\frac{\sqrt{2}}{2}$,
∵0≤θ≤π,
∴θ=$\frac{3π}{4}$,
故选:A

点评 本题考查向量的夹角的计算,考查向量数量积公式的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知抛物线Γ:y2=2px(p>0)的焦点为F.若过点F且斜率为1的直线与抛物线Γ相交于M,N两点,又△MON的面积为${S_{△MON}}=\frac{{\sqrt{2}}}{2}$.
(1)求抛物线Γ的方程;
(2)若点P是抛物线Γ上的动点,点B,C在y轴上,圆(x-1)2+y2=1内切于△PBC,求△PBC的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知F点为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,以点F为圆心的圆于C的渐近线相切,且与C交于A,B两点,若AF⊥x轴,则C的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,长方体ABCD-A1B1C1D1中,AA1=2AB=2BC=2,则异面直线A1B与AD1所成角的余弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{3}{5}$C.$\frac{\sqrt{10}}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.《算学启蒙》值中国元代数学家朱世杰撰写的一部数学启蒙读物,包括面积、体积、比例、开方、高次方程等问题,《算学启蒙》中有关于“松竹并生”的问题:“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等”,如图是源于其思想的一个程序框图,若输入a,b分别为8,2,则输出的n等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xoy中,直线l过点M(3,4),其倾斜角为45°,以原点为极点,以x正半轴为极轴建立极坐标,并使得它与直角坐标系xoy有相同的长度单位,圆C的极坐标方程为ρ=4sinθ.
(Ⅰ)求直线l的参数方程和圆C的普通方程;
(Ⅱ)设圆C与直线l交于点A、B,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{2}}{2}$,它的一个顶点的坐标为(0,-1)
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C上存在两个不同的点A、B关于直线y=-$\frac{1}{m}$x+$\frac{1}{2}$对称,求△OAB的面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且acosB+bcosA=2ccosC.
(Ⅰ)求角C;
(Ⅱ)若c=2$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,半径为1的半圆O上有一动点B,MN为直径,A为半径ON延长线上的一点,且OA=2,∠AOB的角平分线交半圆于点C.
(1)若$\overrightarrow{AC}•\overrightarrow{AB}=3$,求cos∠AOC的值;
(2)若A,B,C三点共线,求线段AC的长.

查看答案和解析>>

同步练习册答案