精英家教网 > 高中数学 > 题目详情
6.如图,长方体ABCD-A1B1C1D1中,AA1=2AB=2BC=2,则异面直线A1B与AD1所成角的余弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{3}{5}$C.$\frac{\sqrt{10}}{5}$D.$\frac{4}{5}$

分析 连接BC1,A1C1,则∠A1BC1为所求角或其补角,在△A1BC1中,由余弦定理求出cos∠A1BC1即可得出答案.

解答 解:连接BC1,A1C1,则AD1∥BC1
∴∠A1BC1为异面直线A1B与AD1所成角或其补角,
在长方体ABCD-A1B1C1D1中,∵AA1=2AB=2BC=2,
∴A1B=BC1=$\sqrt{5}$,A1C1=$\sqrt{2}$,
在△A1BC1中,由余弦定理得cos∠A1BC1=$\frac{5+5-2}{2×\sqrt{5}×\sqrt{5}}$=$\frac{4}{5}$.
故选D.

点评 本题考查了异面直线所成角的计算,构造平行线作出要求的角是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱中ABC-DEF,点P,G分别是AD,EF的中点,已知AD⊥平面ABC,AD=EF=3,DE=DF=2.

(Ⅰ)求证:DG⊥平面BCEF;
(Ⅱ)求PE与平面BCEF 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1,若一组斜率为$\frac{1}{4}$的平行直线被椭圆C所截线段的中点均在直线l上,则l的斜率为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|1<x≤3},若N={x|0≤x<2},则M∪N=(  )
A.{x|0≤x≤3}B.{x|1<x<2}C.{x|0≤x≤1}D.{x|2<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=xlnx+x-k(x-1)在(1,+∞)内有唯一零点x0,若k∈(n,n+1),n∈Z,则n=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合M={x|x2-x<0},N={y|y=ax(a>0,a≠1)},R表示实数集,则下列选项错误的是(  )
A.M∩N=MB.M∪N=RC.M∩∁RN=φD.RM∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是(  )
A.$\frac{3π}{4}$B.$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知Sn是等差数列an的前n项和,且S3=2a1,则下列结论错误的是(  )
A.a4=0B.S4=S3C.S7=0D.an是递减数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在三棱锥C-ABO中,OA、OB、OC所在直线两两垂直,且OA=OB,CA与平面AOB所成角为60°,D是AB中点,三棱锥C-ABO的体积是$\frac{{\sqrt{3}}}{6}$.
(1)求三棱锥C-ABO的高;
(2)在线段CA上取一点E,当E在什么位置时,异面直线BE与OD所成的角为arccos$\frac{1}{4}$?

查看答案和解析>>

同步练习册答案