| A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\frac{4}{5}$ |
分析 连接BC1,A1C1,则∠A1BC1为所求角或其补角,在△A1BC1中,由余弦定理求出cos∠A1BC1即可得出答案.
解答
解:连接BC1,A1C1,则AD1∥BC1,
∴∠A1BC1为异面直线A1B与AD1所成角或其补角,
在长方体ABCD-A1B1C1D1中,∵AA1=2AB=2BC=2,
∴A1B=BC1=$\sqrt{5}$,A1C1=$\sqrt{2}$,
在△A1BC1中,由余弦定理得cos∠A1BC1=$\frac{5+5-2}{2×\sqrt{5}×\sqrt{5}}$=$\frac{4}{5}$.
故选D.
点评 本题考查了异面直线所成角的计算,构造平行线作出要求的角是关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x≤3} | B. | {x|1<x<2} | C. | {x|0≤x≤1} | D. | {x|2<x≤3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N=M | B. | M∪N=R | C. | M∩∁RN=φ | D. | ∁RM∪N=R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{4}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com