精英家教网 > 高中数学 > 题目详情
11.若过点P(0,2),Q(1,3)的直线的参数方程为$\left\{{\begin{array}{l}{x=t+a}\\{y=\frac{b}{2}t+1}\end{array}}\right.(t$为参数,a,b为常数),则a=-1;b=2.

分析 将直线的参数方程消去参数t得到直角坐标系下的方程,再将点P(0,2),Q(1,3)代入直线方程,列出方程组求出a、b的值.

解答 解:由题意得,直线的参数方程为$\left\{{\begin{array}{l}{x=t+a}\\{y=\frac{b}{2}t+1}\end{array}}\right.(t$为参数,a,b为常数),
∴消去参数t可得,$y=\frac{b}{2}(x-a)+1$,
∵直线过点P(0,2),Q(1,3),
∴$\left\{\begin{array}{l}{2=\frac{b}{2}(0-a)+1}\\{3=\frac{b}{2}(1-a)+1}\end{array}\right.$,
解得a=-1、b=2,
故答案为:-1;2.

点评 本题考查直线的参数方程与普通方程的相互转化,以及方程思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.命题p:不等式ax2+2ax+1>0的解集为R,命题q:0<a<1,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在直角坐标系xOy中,曲线C1的参数方程为:$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=$\frac{2π}{3}$与C1的异于极点的交点为A,与C2:ρ=8sinθ的异于极点的交点为B,则AB=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\sqrt{x+lnx-a}$,若存在x∈[1,e],使f(f(x))=x成立,则实数a的取值范围是[e+1-e2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第3组的人数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定积分$\int_1^e{(x+\frac{1}{x}})dx$=$\frac{{e}^{2}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.cos(-$\frac{11π}{6}$)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)当x>1时,比较x3与x2-x+1的大小
(2)已知:a<b,$\frac{1}{a}<\frac{1}{b}$.判定a,b的符号.

查看答案和解析>>

同步练习册答案