精英家教网 > 高中数学 > 题目详情
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点.
(1)证明:直线EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.
分析:(1)可以通过证明面面平行来证明线面平行;
(2)通过建立空间直角坐标系,先求出两个平面的法向量,则两个平面的法向量的夹角即为两平面的二面角或其补角.
解答:解:(1)∵F为AB的中点,CD=2,AB=4,AB∥CD,∴CD∥AF,
∴四边形AFCD为平行四边形,∴AD∥FC.
又CC1∥DD1,FC∩CC1=C,FC?平面FCC1,CC1?平面FCC1
∴平面ADD1A1∥平面FCC1
又EE1?平面ADD1A1,∴EE1∥平面FCC1
(2)过D作DR⊥CD交于AB于R,以D为坐标原点建立如图所示的空间直角坐标系.
则F(
3
,1,0),B(
3
,3,0),C(0,2,0),C1(0,2,2),
FB
=(0,2,0),
BC1
=(-
3
,-1,2),
DB
=(
3
,3,0).
由FB=CB=CD=DF,∴四边形BCEF是菱形,∴DB⊥FC.
又CC1⊥平面ABCD,
DB
为平面FCC1的一个法向量.
设平面BFC1的一个法向量为
n
=(x,y,z),
n
FB
=0
n
BC1
=0
2y=0
-
3
x-y+2z=0
,可得y=0,令x=2,则z=
3
,∴
n
=(2,0,
3
)

cos<
n
DB
=
n
DB
|
n
| |
DB
|
=
2
3
22+(
3
)2
(
3
)2+32
=
7
7

故所求二面角的余弦值为
7
7
点评:熟练掌握利用面面平行来证明线面平行、利用两个平面的法向量的夹角求两平面的二面角是解题的关键..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点,F为AB的中点.证明:
(1)EE1∥平面FCC1
(2)平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1
(2)证明:平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、如图,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F分别是AB,BC的中点.
(1)求证:EF∥平面A1BC1
(2)求证:平面D1DBB1⊥平面A1BC1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)如图,在直四棱柱ABCD-A1B1C1D1中,AB=BC,∠ABC=60°,BB1=BC=2,M为BC中点,点N在CC1上.
(1)试确定点N的位置,使AB1⊥MN;
(2)当AB1⊥MN时,求二面角M-AB1-N的正切值.

查看答案和解析>>

同步练习册答案