精英家教网 > 高中数学 > 题目详情
(本题满分14分)如图:
在棱长为1的正方体中.
点M是棱的中点,点的中点.
(1)求证:垂直于平面
(2)求平面与平面所成二面角的平面角(锐角)
的余弦值. 
 (1)见解析(2)
(1)证明:连结                                  1分
的中点
                                        2分
                  3分
                                          4分
的中点,                         5分
,是矩形,过点且为的中点
同理可证:                                          6分
平面                                     7分

在等腰直角三角形中,.              12分
                                13分
  所以…                          14分
或解:(1)分别以轴建立直角坐标系,         1分
               2分
                     3分
                                     4分
,即                 6分
                                          7分
(2)设点平面的法向量为                       8分
                                        
                                 10分
解得 即                                    11分
又平面的法向量为                           12分
                                       13分
,即所求的二面角的平面角的余弦值为            14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。
(1)求证:BC⊥平面PAC;
(2)求二面角D-PC-A的大小的正切值;
(3)求点B到平面PCD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分).有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个边长为的小正方形,剰余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的的容积V1(用表示);
(2)经过设计(1)的方法,计算得到当时,Vl取最大值,为了材料浪费最少,工人师傅还实践出了其它焊接方法,请写出与(1)的焊接方法更佳(使材料浪费最少,容积比Vl大)的设计方案,并计算利用你的设计方案所得到的容器的容积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,在中,为AC边上的高,沿BD将翻折,使得得到几何体
(I)求证:AC^平面BCD;
(Ⅱ)求异面直线AB与CD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题共12分)如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G
(1)AE平面BCE
(2)AE//平面BFD
(3)锥C-BGF的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.棱长均为1三棱锥,若空间一点满足,则的最小值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

 是两个不重合的平面,为不重合的直线,则下列命题正确的(   ) 
A.若,则B.若,则
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正三棱柱的各棱长都为2,E,F分别是的中点,则EF的长是              (    )
A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是夹角为的异面直线,则满足条件“,且”的平面(    )
A.不存在 B.有且只有一对
C.有且只有两对D.有无数对

查看答案和解析>>

同步练习册答案