精英家教网 > 高中数学 > 题目详情
.棱长均为1三棱锥,若空间一点满足,则的最小值为
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图:
在棱长为1的正方体中.
点M是棱的中点,点的中点.
(1)求证:垂直于平面
(2)求平面与平面所成二面角的平面角(锐角)
的余弦值. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,的中点,以为折痕将向上折起,使,且平面平面
(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,分别是的中点,现将沿折起,使平面平面(如图2),且所得到的四棱锥的正视图、侧视图、俯视图的面积总和为8.
⑴求点到平面的距离;
⑵求二面角的大小的夹角的余弦值;
⑶在线段上确定一点,使平面,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A—BCDE中,底面BCDE为矩形,AB=AC,BC=2,CD=1,并且侧面底面BCDE。
(1)取CD的中点为F,AE的中点为G,证明:FG//面ABC;
(2)试在线段BC上确定点M,使得AEDM,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a
(I)求证:AB1⊥BC1
(II)求二面角B—AB1—C的大小;
(III)求点A1到平面AB1C的距离.


 
 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是矩形,,点的中点,点在边上移动。
1)点的中点时,试判断与平面的位置关系,并说明理由。
2)证明:无论点在边的何处,都有
3)当等于何值时,与平面所成角的大小为.(12分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如右图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,∠PDA=30°,点F是PB的中点,
点E在边BC上,
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)证明:AF⊥平面PBC;
(Ⅲ)当BE等于何值时,二面角P—DE—A的大小为45°?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在长方体中,的中点,的中点.
(1)证明:
(2)求与平面所成角的正弦值.
                                        

查看答案和解析>>

同步练习册答案