精英家教网 > 高中数学 > 题目详情

【题目】p:实数x满足x2-5ax+4a2<0(其中a>0),q:实数x满足2<x≤5.

(1)若a=1,且pq为真,求实数x的取值范围;

(2)若qp的必要不充分条件,求实数a的取值范围.

【答案】(1)(2,4).(2)

【解析】试题分析:(1)首先,当时,求出不等式的解集,为真,即求两个集合的交集;

2)首先根据等价命题转化为的必要不充分条件,那么根据集合得出命题表示的集合是命题表示集合的子集,求出的取值范围.

试题解析:当a1时,解得1x4

p为真时实数x的取值范围是1x4

p∧q为真,则p真且q真,

所以实数x的取值范围是(2,4).

2的必要不充分条件即pq的必要不充分条件,

A{x|px}B{x|qx},则BA

x25ax4a20得(x4a)(xa)<0

∵a0∴A=(a,4a),

B=(2,5], 则a≤24a5,解得a≤2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是
B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DFDB=

C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为a,b,c,设S为△ABC的面积,满足Sa2+c2b2).

1)求角B的大小;

2)若边b,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;
(3)若点M的横坐标为 ,直线l:y=kx+ 与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当 ≤k≤2时,|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立

(1)记20件产品中恰有2件不合格品的概率为,的最大值点

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;

(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,圆My轴相切,并且经过点

1)求圆M的方程;

2)过点作圆M的两条互垂直的弦ACBD,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;

(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

同步练习册答案