精英家教网 > 高中数学 > 题目详情
已知A,B,C为△ABC的三个内角,所对的边分别为a,b,c,且bcosA=acosB,则下列结论正确的是(  )
A、A>CB、A<B
C、A>BD、A=B
考点:正弦定理
专题:解三角形
分析:bcosA=acosB,由正弦定理可得:sinBcosA=sinAcosB,因此sin(A-B)=0,即可得出.
解答: 解:∵bcosA=acosB,由正弦定理可得:sinBcosA=sinAcosB,
∴sin(A-B)=0,
∵A,B∈(0,π),
∴A=B,
故选:D.
点评:本题考查了正弦定理的应用、同角三角函数基本关系式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个半径为
21
3
的球内有一个各棱长都相等的内接正三棱柱,则此三棱柱的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2xsinα-1,x∈[-
3
2
1
2
],a∈[0,2π]
(1)当α=
π
6
时,求f(x)的最大值和最小值,并求使函数取得最值的x的值;
(2)求α的取值范围,使得f(x)在区间[-
3
2
1
2
]上是单调函数;
(3)当α∈[0,
π
2
]时,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).
(1)求证:f(x)是以4为周期的周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=
1
2
x
,求当x∈[-1,3)时,f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3x2-3mx+4有极大值5.
(1)求m;
(2)求过原点切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点在原点,焦点是椭圆x2+5y2=5的左焦点,过点M(-1,1)引抛物线的弦使点M为弦中点.求弦所在的直线方程,并求出弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1、F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过点F1且垂直于x轴的直线与双曲线交于A、B两点,若△ABF2是直角三角形,则该双曲线的离心率是(  )
A、
2
B、2
C、1+
2
D、2+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(x-2π)-cos(π-x)=
1-
3
2
,x为第二象限角,求:
(1)sinx与cosx的值;
(2)角x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(2x+
π
6
)的图象向左平移
π
6
个单位,所得函数的解析式为
 

查看答案和解析>>

同步练习册答案