精英家教网 > 高中数学 > 题目详情
14.设F1,F为椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1,(a1>b1>0)与双曲线C2的公共左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,若椭圆C1的离心率e∈[$\frac{3}{8}$,$\frac{4}{9}$],则双曲线C2的离心率的取值范围是(  )
A.[$\frac{5}{4}$,$\frac{5}{3}$]B.[$\frac{3}{2}$,++∞)C.(1,4]D.[$\frac{3}{2}$,4]

分析 如图所示,设双曲线C2的离心率为e1,椭圆与双曲线的半焦距为c.由椭圆的定义及其题意可得:|MF2|=|F1F2|=2c,|MF1|=2a-2c.由双曲线的定义可得:2a-2c-2c=2a1,即a-2c=a1,可得$\frac{1}{e}$-2=$\frac{1}{{e}_{1}}$,利用e∈[$\frac{3}{8}$,$\frac{4}{9}$],即可得出双曲线C2的离心率的取值范围.

解答 解:如图所示,
设双曲线C2的离心率为e1
椭圆与双曲线的半焦距为c.
由椭圆的定义及其题意可得:|MF2|=|F1F2|=2c,|MF1|=2a-2c.
由双曲线的定义可得:2a-2c-2c=2a1,即a-2c=a1
∴$\frac{1}{e}$-2=$\frac{1}{{e}_{1}}$,
∵e∈[$\frac{3}{8}$,$\frac{4}{9}$],∴$\frac{1}{e}$∈[$\frac{9}{4}$,$\frac{8}{3}$],
∴$\frac{1}{{e}_{1}}$∈[$\frac{1}{4}$,$\frac{2}{3}$].
∴e1∈[$\frac{3}{2}$,4].
故选:D.

点评 本题考查了椭圆与双曲线的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{BA}$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$),则∠ABC=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数y=${(\frac{1}{2})^{|x|}}$+m有零点,则实数m的取值范围是[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,线段MA的垂直平分线交MC于点N,设点N的轨迹为曲线E.
(1)求曲线E方程;
(2)若经过F(0,2)的直线l交曲线E于不同的两点G,H(点G在点F,H之间),且满足$\overrightarrow{FG}=\frac{3}{5}\overrightarrow{FH}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知偶函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式xf(x)>0的解集是(  )
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等比数列{an}的首项为a1,公比为q,则它的通项an=${a}_{1}{q}^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)作出不等式x+y-3≤0在坐标平面内表示的区域(用阴影部分表示);      
(2)求不等式x2-3x+2<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.比较${2^{0.2}},{2^{0.5}},lo{g_3}\frac{3}{2}$的大小20.5>20.2>$lo{g}_{3}\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定义在R上的函数f(x)=$\frac{x+a}{{{x^2}+1}}$(a∈R)是奇函数,函数g(x)=$\frac{mx}{2+x}$的定义域为(-2,+∞).
(1)求a的值;
(2)若g(x)=$\frac{mx}{2+x}$在(-2,+∞)上单调递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(-1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案