精英家教网 > 高中数学 > 题目详情
19.设等比数列{an}的首项为a1,公比为q,则它的通项an=${a}_{1}{q}^{n-1}$.

分析 利用等比数列的通项公式求解.

解答 解:等比数列{an}的首项为a1,公比为q,
则它的通项an=${a}_{1}{q}^{n-1}$.
故答案为:${a}_{1}{q}^{n-1}$.

点评 本题考查等比数列的通项公式的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图,角α的始边与x轴的非负半轴重合,终边与单位圆交于点A(x1,y1),角β=α+$\frac{2π}{3}$的终边与单位圆交于点B(x2,y2),记f(α)=y1-y2.若角α为锐角,则f(α)的取值范围是(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=0.2x的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,与y=x表示同一函数的是(  )
A.y=$\frac{|x|}{x}$B.y=${a^{{{log}_a}x}}$(a>0且a≠1)
C.y=$\sqrt{x^2}$D.y=logaax(a>0且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设F1,F为椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1,(a1>b1>0)与双曲线C2的公共左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,若椭圆C1的离心率e∈[$\frac{3}{8}$,$\frac{4}{9}$],则双曲线C2的离心率的取值范围是(  )
A.[$\frac{5}{4}$,$\frac{5}{3}$]B.[$\frac{3}{2}$,++∞)C.(1,4]D.[$\frac{3}{2}$,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.“a>0,b>0”是“$\frac{b}{a}$+$\frac{a}{b}$≥2”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{4+{2}^{1-x}}{1+{2}^{-x}}$(x∈R)
(1)用定义证明f(x)是增函数;
(2)若g(x)=f(x)-a是奇函数,求g(x)在(-∞,a]上的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-1|+|x+1|(x∈R)
(1)画出函数图象,并写出函数的值域;
(2)求使函数F(x)=f(x)-n有两个不同的零点时的n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=$\sqrt{3}$,则异面直线AD,BC所成的角的补角为(  )
A.120°B.60°C.90°D.30°

查看答案和解析>>

同步练习册答案