精英家教网 > 高中数学 > 题目详情
6.若偶函数f(x)在(-∞,-1]上是增函数,则下列关系式中成立的是(  )
A.$f(2)<f(-\frac{3}{2})<f(-1)$B.$f(-1)<f(-\frac{3}{2})<f(2)$C.$f(2)<f(-1)<f(-\frac{3}{2})$D.$f(-\frac{3}{2})<f(-1)<f(2)$

分析 根据函数奇偶性和单调性之间的关系进行转化即可.

解答 解:∵偶函数f(x)在(-∞,-1]上是增函数,
∴函数f(x)在[1,+∞)上是减函数,
则f(2)<f($\frac{3}{2}$)<f(1),
即f(2)<f(-$\frac{3}{2}$)<f(-1),
故选:A

点评 本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.化简:m2n÷$\sqrt{\frac{{m}^{3}}{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等腰三角形ABC中,D是腰AC上一点,满足$\overrightarrow{{B}D}$=$\frac{1}{2}$$\overrightarrow{{B}{A}}$+$\frac{1}{2}$$\overrightarrow{{B}C}$,且|${\overrightarrow{{B}D}}$|=2,设角∠BAC=α,AB=AC=c,则△ABC面积S的最大值为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,如果输入的N=5,那么输出的S=(  )
A.$\frac{10}{9}$B.$\frac{16}{9}$C.$\frac{8}{5}$D.$\frac{20}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx+$\frac{m}{x}$,m∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线与y轴的交点的纵坐标为1,求m;
(2)讨论函数f(x)的单调区间;
(3)若对任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x1,x2是函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+2bx的两个极值点,且x1∈(0,1),x2∈(1,2),则$\frac{b-2}{a+2}$的取值范围是(  )
A.(-2,1)B.(-∞,$\frac{1}{4}$)∪(1,+∞)C.($\frac{1}{4}$,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定义在R上的函数f(x)为奇函数,且在[0,+∞)是增函数,问是否存在这样的实数m,使得f(2cos2θ-4)+f(4m-2mcosθ)>f(0)对所有的实数θ∈R都成立;若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=3cos2$\frac{ωx}{2}+\frac{{\sqrt{3}}}{2}sinωx-\frac{3}{2}$(ω>0)在一个周期内的图象如图所示,点A为图象的最高点,B,C为图象与x轴的交点,且三角形ABC的面积为$\frac{\sqrt{3}}{4}$π.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=$\frac{4\sqrt{3}}{5}$,x0∈($\frac{π}{12}$,$\frac{π}{3}$),求f(x0+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=cos2πx的最小正周期是(  )
A.πB.C.1D.2

查看答案和解析>>

同步练习册答案