精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=2,且点P(an,an+1)(n∈N*)在直线2x-y=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
n
an
,求数列{bn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得an+1=2an,a1=2,由此能求出an=2•2n-1=2n
(Ⅱ)由bn=n•(
1
2
)n
,利用错位相减法能求出数列{bn}的前n项和Tn
解答: (本小题满分12分)
解:(Ⅰ)∵数列{an}中,a1=2,且点P(an,an+1)(n∈N*)在直线2x-y=0上,
∴an+1=2an,a1=2,…(2分)
∴{an}是首项为2,公比为2的等比数列,
an=2•2n-1=2n.…(5分)
(Ⅱ)∵an=2n,bn=
n
an
,∴bn=n•(
1
2
)n
…(6分)
Tn=1×(
1
2
)+2×(
1
2
)2+3×(
1
2
)3+…+n×(
1
2
)n
,①…(7分)
①×
1
2
1
2
Tn=
 &1×(
1
2
)
2
+2×(
1
2
)3+…+(n-1)×(
1
2
)n+n×(
1
2
)n+1
,②…(8分)
①-②:
1
2
Tn=
1
2
+(
1
2
)2+(
1
2
)3+…+(
1
2
)n-n×(
1
2
)n+1

=
1
2
[1-(
1
2
)
n
]
1-
1
2
-n×(
1
2
)n+1
…(10分)
Tn=2-(n+2)•(
1
2
)n
.…(12分)
点评:本题考查数列的通项公式和数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}的首项为3,公比为2,其前n项和记为Sn;比数列{bn}的首项为2,公比为3,其前n项和记为Tn,则
lim
n→∞
an+bn
Sn+Tn
=(  )
A、
1
2
B、1
C、
2
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=
2x
4x+1

(1)求f(1)和f(-1)的值;
(2)求f(x)在[-1,1]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校举办一次以班级为单位的广播操比赛,9位评委给高一(1)班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=
π
2
0
cosxdx,二项式(2x2+
a
x
n的展开式的各项系数和为243
(Ⅰ)求该二项展开式的二项式系数和;
(Ⅱ)求该二项展开式中x4项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某投资者有10万元,现有两种投资方案:一是购买股票,二是购买基金.买股票和基金的收益主要取决于经济形势,假设可分为三种状态:形势好(股票获利40000元,基金获利25000)、形势中等(股票获利10000元,基金获利15000)、形势不好(股票损失20000元,基金损失11000).又设经济形势好、中等、不好的概率分别为0.3、0.5、0.2.试问该投资者应该选择哪一种投资方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac
(1)求B;
(2)若△ABC的面积S=4
3
,a=4,求边b的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A,B,C对边分别为a,b,c,AD是BC边上的中线,C=60°.
(1)若a=6且b=2,求AD的长;
(2)若AD=2,求S△ABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
3
cos2ax-sinaxcosax(a>0)的图象与直线y=m(m>0)相切,并且切点横坐标依次成公差为π的等差数列.
(1)求a和m的值;
(2)△ABC中a、b、c分别是∠A、∠B、∠C的对边.若(
A
2
3
2
)是函数f(x)图象的一个对称中心,且a=4,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案