17£®ÒÔÏÂËĸöÃüÌâÖУ¬ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
¢ÙÔڻعé·ÖÎöÖУ¬¿ÉÓÃÏà¹ØÖ¸ÊýR2µÄÖµÅжÏÄ£Ð͵ÄÄâºÏЧ¹û£¬R2Ô½´ó£¬Ä£ÄâµÄÄâºÏЧ¹ûÔ½ºÃ£»
¢ÚÁ½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬Ïà¹ØÏµÊýÔ½½Ó½üÓÚ1£»
¢ÛÈôÊý¾Ýx1£¬x2£¬x3¡­£¬xnµÄ·½²îΪ1£¬Ôò3x1£¬3x2£¬3x3¡­£¬3xnµÄ·½²îΪ3£»
¢Ü¶Ô·ÖÀà±äÁ¿xÓëyµÄËæ»ú±äÁ¿µÄ¹Û²âÖµk2À´Ëµ£¬kԽС£¬Åжϡ°xÓëyÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£®
A£®1B£®2C£®3D£®4

·ÖÎö £¨1£©¸ù¾ÝÏà¹ØÖ¸ÊýR2µÄÖµµÄÐÔÖʽøÐÐÅжϣ¬
£¨2£©¸ù¾ÝÏßÐÔÏà¹ØÐÔÓërµÄ¹ØÏµ½øÐÐÅжϣ¬
£¨3£©¸ù¾Ý·½²î¹ØÏµ½øÐÐÅжϣ¬
£¨4£©¸ù¾Ý·ÖÀà±äÁ¿xÓëyµÄËæ»ú±äÁ¿k2µÄ¹Û²ìÖµµÄ¹ØÏµ½øÐÐÅжϣ®

½â´ð ½â£º£¨1£©ÓÃÏà¹ØÖ¸ÊýR2µÄÖµÅжÏÄ£Ð͵ÄÄâºÏЧ¹û£¬R2Ô½´ó£¬Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£¬¹Ê£¨1£©ÕýÈ·£»
£¨2£©ÈôÁ½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬ÔòÏà¹ØÏµÊýrµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1£¬¹Ê£¨2£©´íÎó£»
£¨3£©Èôͳ¼ÆÊý¾Ýx1£¬x2£¬x3£¬¡­£¬xnµÄ·½²îΪ1£¬Ôò3x1£¬3x2£¬3x3¡­£¬3xnµÄ·½²îΪ9£¬¹Ê£¨3£©´íÎó£»
£¨4£©¶Ô·ÖÀà±äÁ¿xÓëyµÄËæ»ú±äÁ¿k2µÄ¹Û²ìÖµk2À´Ëµ£¬kԽС£¬Åжϡ°xÓëyÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£®´íÎó£»
¹ÊÑ¡£ºA£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°¸ÅÂÊͳ¼ÆÖÐËæ»ú±äÁ¿µÄ¹ØÏµ¼°Ëæ»ú±äÁ¿µÄÏà¹ØÐÔÑо¿»Ø¹éÖ±Ïß·½³ÌµÄ¸ÅÄ¿¼²éÁËÍÆÀíÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁм¸ÖÖÍÆÀí¹ý³ÌÊÇÑÝÒïÍÆÀíµÄÊÇ£¨¡¡¡¡£©
A£®5ºÍln3¿ÉÒԱȽϴóС
B£®ÓÉÆ½ÃæÈý½ÇÐεÄÐÔÖÊ£¬ÍƲâ¿Õ¼äËÄÃæÌåµÄÐÔÖÊ
C£®¶«Éý¸ßÖи߶þÄê¼¶ÓÐ15¸ö°à£¬1°àÓÐ51ÈË£¬2°àÓÐ53ÈË£¬3°àÓÐ52ÈË£¬ÓÉ´ËÍÆ²â¸÷°à¶¼³¬¹ý50ÈË
D£®Ô¤²â¹ÉƱ×ßÊÆÍ¼

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔËÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öµÄa¡¢b¡¢cÂú×㣨¡¡¡¡£©
A£®c¡Üb¡ÜaB£®a¡Üb¡ÜcC£®a¡Üc¡ÜbD£®b¡Üc¡Üa

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÉèÖ±Ïßl£º3x+4y+4=0£¬Ô²C£º£¨x-2£©2+y2=r2£¨r£¾0£©£¬ÈôÔ²CÉÏ´æÔÚÁ½µãP£¬Q£¬Ö±ÏßlÉÏ´æÔÚÒ»µãM£¬Ê¹µÃ¡ÏPMQ=90¡ã£¬ÔòrµÄȡֵ·¶Î§ÊÇ$[\sqrt{2}£¬+¡Þ£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÈôʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}2x-y-2¡Ü0\\ 2x+y-4¡Ý0\\ y¡Ü2\end{array}\right.$Ôò$\frac{y}{x}$µÄȡֵ·¶Î§ÊÇ  £¨¡¡¡¡£©
A£®$[{\frac{2}{3}£¬2}]$B£®$[{\frac{1}{2}£¬\frac{3}{2}}]$C£®$[{\frac{3}{2}£¬2}]$D£®[1£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈçͼËùʾ£¬Í¼ÖдÖÏß»­³öµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼ£¬¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{4}{3}$C£®$\frac{8}{3}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊÊÇ$\frac{1}{2}$£¬¹ýµã$P£¨0£¬\frac{{\sqrt{3}}}{2}£©$µÄ¶¯Ö±ÏßlÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬µ±Ö±ÏßlƽÐÐÓëxÖáʱ£¬Ö±Ïßl±»ÍÖÔ²½ØµÃµÄÏ߶γ¤Îª$2\sqrt{3}$£®£¨F1£¬F2·Ö±ðΪ×ó£¬ÓÒ½¹µã£©
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¹ýF2µÄÖ±Ïßl¡ä½»ÍÖÔ²ÓÚ²»Í¬µÄÁ½µãM£¬N£¬Ôò¡÷F1MNÄÚÇÐÔ²µÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ¼°´ËʱµÄÖ±Ïßl¡ä·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª$\overrightarrow a=£¨{\sqrt{3}sinx£¬cosx+sinx}£©£¬\overrightarrow b=£¨{2cosx£¬sinx-cosx}£©£¬f£¨x£©=\overrightarrow a•\overrightarrow b$£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±$x¡Ê[{\frac{5¦Ð}{24}£¬\frac{5¦Ð}{12}}]$ʱ£¬¶ÔÈÎÒâµÄt¡ÊR£¬²»µÈʽmt2+mt+3¡Ýf£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®2017ÄêijÊпªÕ¹ÁË¡°Ñ°ÕÒÉí±ßµÄºÃÀÏʦ¡±»î¶¯£¬ÊÐÁùÖлý¼«Ðж¯£¬ÈÏÕæÂäʵ£¬Í¨¹ý΢ÐŹØ×¢ÆÀÑ¡¡°Éí±ßµÄºÃÀÏʦ¡±£¬²¢¶ÔÑ¡³öµÄ°àÖ÷Èι¤×÷ÄêÏÞ²»Í¬µÄÎåλ¡°ºÃÀÏʦ¡±µÄ°àÖ÷ÈεŤ×÷ÄêÏ޺ͱ»¹Ø×¢ÊýÁ¿½øÐÐÁËͳ¼Æ£¬µÃµ½ÈçÏÂÊý¾Ý£º
°àÖ÷Èι¤×÷ÄêÏÞx£¨µ¥Î»£ºÄ꣩4681012
±»¹Ø×¢ÊýÁ¿y£¨µ¥Î»£º°ÙÈË£©1020406050
£¨1£©Èô¡±ºÃÀÏʦ¡±µÄ±»¹Ø×¢ÊýÁ¿yÓëÆä°àÖ÷ÈεŤ×÷ÄêÏÞxÂú×ãÏßÐԻع鷽³Ì£¬ÊÔÇ󻨹鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£¬²¢¾Í´Ë·ÖÎö£º¡°ºÃÀÏʦ¡±µÄ°àÖ÷Èι¤×÷ÄêÏÞΪ15Äêʱ±»¹Ø×¢µÄÊýÁ¿£»
£¨2£©ÈôÓÃ$\frac{y_i}{x_i}$£¨i=1£¬2£¬3£¬4£¬5£©±íʾͳ¼ÆÊý¾Ýʱ±»¹Ø×¢ÊýÁ¿µÄ¡°¼´Ê±¾ùÖµ¡±£¨ËÄÉáÎåÈëµ½ÕûÊý£©£¬´Ó¡°¼´Ê±¾ùÖµ¡±ÖÐÈÎÑ¡2×飬ÇóÕâ2×éÊý¾ÝÖ®ºÍСÓÚ8µÄ¸ÅÂÊ£®£¨²Î¿¼¹«Ê½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸