分析 由切线的对称性和圆的知识将问题转化为MC⊥l时,使得过M作圆的两条切线,切线夹角大于等于900即可.
解答
解:圆C:(x-2)2+y2=r2,圆心为:(2,0),半径为r,
∵在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,
∴在直线l上存在一点M,使得过M作圆的两条切线,切线夹角大于等于90,
∴只需MC⊥l时,使得过M作圆的两条切线,切线夹角大于等于900即可
∵C到直线l:3x+4y+4=0的距离2,则r$≥2×sin4{5}^{0}=\sqrt{2}$.
个答案为:[$\sqrt{2}$,+∞).
点评 本题考查直线和圆的位置关系,转化思想是解决问题的关键,属中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com