精英家教网 > 高中数学 > 题目详情
20.执行如图的程序框图,若输入的n为6,则输出的p为(  )
A.8B.13C.29D.35

分析 根据输入的n是6,然后判定k=1,满足条件k<6,则执行循环体,依此类推,当k=6,不满足条件k<6,则退出执行循环体,求出此时p的值即可.

解答 解:模拟程序的运行,可得
n=6,s=0,t=1,k=1,p=1
满足条件k<6,则执行循环体,p=0+1=1,s=1,t=1
k=2,满足条件k<6,则执行循环体,p=1+1=2,s=1,t=2
k=3,满足条件k<6,则执行循环体,p=1+2=3,s=2,t=3
k=4,满足条件k<6,则执行循环体,p=2+3=5,s=3,t=5
k=5,满足条件k<6,则执行循环体,p=3+5=8,s=5,t=8
k=6,不满足条件k<6,退出执行循环体,此时p=8
故选:A.

点评 根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图,从流程图中即要分析出计算的类型,又要分析出参与计算的数据建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x3-3x+2+m(m>0).在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形,则m的取值范围是(  )
A.m>4+4$\sqrt{2}$B.0<m<2+2$\sqrt{2}$C.4-4$\sqrt{2}$<m<4+4$\sqrt{2}$D.0<m<4+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三棱锥S-ABC中,AB=BC=AC=2,SC=4,SA=SB,SC与平面ABC所成角的余弦值是$\frac{{\sqrt{3}}}{3}$,若S,A,B,C都在同一球面上,则该球的表面积是(  )
A.B.C.16πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.运行如图所示的程序框图,则输出的a、b、c满足(  )
A.c≤b≤aB.a≤b≤cC.a≤c≤bD.b≤c≤a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,则输出的i的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设直线l:3x+4y+4=0,圆C:(x-2)2+y2=r2(r>0),若圆C上存在两点P,Q,直线l上存在一点M,使得∠PMQ=90°,则r的取值范围是$[\sqrt{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足约束条件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$则$\frac{y}{x}$的取值范围是  (  )
A.$[{\frac{2}{3},2}]$B.$[{\frac{1}{2},\frac{3}{2}}]$C.$[{\frac{3}{2},2}]$D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率是$\frac{1}{2}$,过点$P(0,\frac{{\sqrt{3}}}{2})$的动直线l与椭圆相交于A,B两点,当直线l平行与x轴时,直线l被椭圆截得的线段长为$2\sqrt{3}$.(F1,F2分别为左,右焦点)
(1)求椭圆的标准方程;
(2)过F2的直线l′交椭圆于不同的两点M,N,则△F1MN内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线l′方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线C:y2=2px(p>0)的焦点为F,过F的直线交抛物线C于A,B两点,以线段AB为直径的圆与抛物线C的准线切于$M(-\frac{p}{2},3)$,且△AOB的面积为$\sqrt{13}$,则抛物线C的方程为y2=4x.

查看答案和解析>>

同步练习册答案