| A. | m>4+4$\sqrt{2}$ | B. | 0<m<2+2$\sqrt{2}$ | C. | 4-4$\sqrt{2}$<m<4+4$\sqrt{2}$ | D. | 0<m<4+4$\sqrt{2}$ |
分析 利用导数求得f(x)=x3-3x+2+m(m>0),在区间[0,2]上的最小值、最大值,由题意构造不等式解得范围.
解答 解:∵f(x)=x3-3x+2+m,
∴求导f′(x)=3x2-3,
由f′(x)=0得到x=1或者x=-1,
又x在[0,2]内,
∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,
则f(x)min=f(1)=m,f(x)max=f(2)=m+4,f(0)=m+2.
∵在区间[0,2]上存在三个不同的实数a,b,c,
使得以f(a),f(b),f(c)为边长的三角形是构成直角三角形,
要满足题意,只需2f(x)2min<f(x)2max
即2m2<(m+4)2,即m2-8m-16<0,解得4-4$\sqrt{2}$<m<4+4$\sqrt{2}$,
又已知m>0,∴0<m<4+4$\sqrt{2}$.
故选:D.
点评 本题考查实数值的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com