7£®2017ÄêijÊпªÕ¹ÁË¡°Ñ°ÕÒÉí±ßµÄºÃÀÏʦ¡±»î¶¯£¬ÊÐÁùÖлý¼«Ðж¯£¬ÈÏÕæÂäʵ£¬Í¨¹ý΢ÐŹØ×¢ÆÀÑ¡¡°Éí±ßµÄºÃÀÏʦ¡±£¬²¢¶ÔÑ¡³öµÄ°àÖ÷Èι¤×÷ÄêÏÞ²»Í¬µÄÎåλ¡°ºÃÀÏʦ¡±µÄ°àÖ÷ÈεŤ×÷ÄêÏ޺ͱ»¹Ø×¢ÊýÁ¿½øÐÐÁËͳ¼Æ£¬µÃµ½ÈçÏÂÊý¾Ý£º
°àÖ÷Èι¤×÷ÄêÏÞx£¨µ¥Î»£ºÄ꣩4681012
±»¹Ø×¢ÊýÁ¿y£¨µ¥Î»£º°ÙÈË£©1020406050
£¨1£©Èô¡±ºÃÀÏʦ¡±µÄ±»¹Ø×¢ÊýÁ¿yÓëÆä°àÖ÷ÈεŤ×÷ÄêÏÞxÂú×ãÏßÐԻع鷽³Ì£¬ÊÔÇ󻨹鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£¬²¢¾Í´Ë·ÖÎö£º¡°ºÃÀÏʦ¡±µÄ°àÖ÷Èι¤×÷ÄêÏÞΪ15Äêʱ±»¹Ø×¢µÄÊýÁ¿£»
£¨2£©ÈôÓÃ$\frac{y_i}{x_i}$£¨i=1£¬2£¬3£¬4£¬5£©±íʾͳ¼ÆÊý¾Ýʱ±»¹Ø×¢ÊýÁ¿µÄ¡°¼´Ê±¾ùÖµ¡±£¨ËÄÉáÎåÈëµ½ÕûÊý£©£¬´Ó¡°¼´Ê±¾ùÖµ¡±ÖÐÈÎÑ¡2×飬ÇóÕâ2×éÊý¾ÝÖ®ºÍСÓÚ8µÄ¸ÅÂÊ£®£¨²Î¿¼¹«Ê½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£©£®

·ÖÎö £¨1£©ÀûÓù«Ê½Çó³ö»Ø¹éϵÊý£¬¿ÉµÃ»Ø¹é·½³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£¬´Ó¶øÔ¤²â°àÖ÷Èι¤×÷ÄêÏÞΪ15Äêʱ±»¹Ø×¢µÄÊýÁ¿£»
£¨2£©È·¶¨´Ó5×é¡°¼´Ê±¾ùÖµ¡±ÈÎÑ¡2×é¡¢Õâ2×éÊý¾ÝÖ®ºÍСÓÚ8µÄ»ù±¾Ê¼þÊý£¬¼´¿ÉÇó³ö¸ÅÂÊ£®

½â´ð ½â£º£¨1£©$\overline{x}$=8£¬$\overline{y}$=36£¬$\widehat{b}$=$\frac{40+120+320+600+600-5¡Á8¡Á36}{16+36+64+100+144-5¡Á64}$=6£¬$\widehat{a}$=36-48=-12£¬
¡à$\widehat{y}$=6x-12£¬
x=15ʱ£¬$\widehat{y}$=6¡Á15-12=78°ÙÈË£»
£¨2£©Õâ5´Îͳ¼ÆÊý¾Ý£¬±»¹Ø×¢ÊýÁ¿µÄ¡°¼´Ê±¾ùÖµ¡±·Ö±ðΪ3£¬3£¬5£¬6£¬4£®
´Ó5×é¡°¼´Ê±¾ùÖµ¡±ÈÎÑ¡2×飬¹²ÓÐ${C}_{5}^{2}$=10ÖÖÇé¿ö£¬ÆäÖÐ2×éÊý¾ÝÖ®ºÍСÓÚ8Ϊ£¨3£¬3£©£¬£¨3£¬4£©£¬£¨3£¬4£©¹²3ÖÖÇé¿ö£¬¡àÕâ2×éÊý¾ÝÖ®ºÍСÓÚ8µÄ¸ÅÂÊΪ$\frac{3}{10}$£®

µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³Ì£¬¿¼²é¸ÅÂÊ֪ʶ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÔÏÂËĸöÃüÌâÖУ¬ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
¢ÙÔڻعé·ÖÎöÖУ¬¿ÉÓÃÏà¹ØÖ¸ÊýR2µÄÖµÅжÏÄ£Ð͵ÄÄâºÏЧ¹û£¬R2Ô½´ó£¬Ä£ÄâµÄÄâºÏЧ¹ûÔ½ºÃ£»
¢ÚÁ½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬Ïà¹ØÏµÊýÔ½½Ó½üÓÚ1£»
¢ÛÈôÊý¾Ýx1£¬x2£¬x3¡­£¬xnµÄ·½²îΪ1£¬Ôò3x1£¬3x2£¬3x3¡­£¬3xnµÄ·½²îΪ3£»
¢Ü¶Ô·ÖÀà±äÁ¿xÓëyµÄËæ»ú±äÁ¿µÄ¹Û²âÖµk2À´Ëµ£¬kԽС£¬Åжϡ°xÓëyÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¼¯ºÏA={1£¬2£¬4}£¬¼¯ºÏ$B=\{z|z=\frac{x}{y}£¬x¡ÊA£¬y¡ÊA\}$£¬Ôò¼¯ºÏBÖÐÔªËØµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®4B£®5C£®6D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+2cos¦È\\ y=2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñsin£¨¦È+\frac{¦Ð}{6}£©=4$£®
£¨¢ñ£©Ð´³öÇúÏßCµÄ¼«×ø±ê·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÉäÏß$¦È=\frac{¦Ð}{3}$ÓëÇúÏßC½»ÓÚO£¬AÁ½µã£¬ÓëÖ±Ïßl½»ÓÚBµã£¬ÉäÏß$¦È=\frac{11¦Ð}{6}$ÓëÇúÏßC½»ÓÚO£¬PÁ½µã£¬Çó¡÷PABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=|log2|1-x||£¬Èôº¯Êýg£¨x£©=f2£¨x£©+af£¨x£©+2bÓÐ6¸ö²»Í¬µÄÁãµã£¬ÔòÕâ6¸öÁãµãÖ®ºÍΪ£¨¡¡¡¡£©
A£®7B£®6C£®$\frac{11}{2}$D£®$\frac{9}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÃüÌâP£º¶ÔÈÎÒâµÄx¡Ê[1£¬2]£¬x2-a¡Ý0£¬ÃüÌâQ£º´æÔÚx¡ÊR£¬x2+2ax+2-a=0£¬ÈôÃüÌâ¡°PÇÒQ¡±ÊÇÕæÃüÌ⣬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇa¡Ü-2»òa=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}£¨x¡Ü0£©}\\{lo{g}_{2}x£¨0£¼x¡Ü1£©}\end{array}\right.$µÄ·´º¯ÊýÊÇf-1£¨x£©£¬Ôòf-1£¨$\frac{1}{2}$£©=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=2lnx+ax-$\frac{4f¡ä£¨2£©}{x}$£¨a¡ÊR£©ÔÚx=2´¦µÄÇÐÏß¾­¹ýµã£¨-4£¬ln2£©
£¨1£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èô²»µÈʽ$\frac{2xInx}{{1-{x^2}}}$£¾mx-1ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈôʵÊýa£¬bÂú×ãa£¾0£¬b£¾0£¬Ôò¡°a£¾b¡±ÊÇ¡°a+lna£¾b+lnb¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸