精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2lnx+ax-$\frac{4f′(2)}{x}$(a∈R)在x=2处的切线经过点(-4,ln2)
(1)讨论函数f(x)的单调性;
(2)若不等式$\frac{2xInx}{{1-{x^2}}}$>mx-1恒成立,求实数m的取值范围.

分析 (1)求出函数的导数,求出a的值,得到导函数的符号,求出函数的单调区间即可;
(2)问题转化为$\frac{1}{{1-{x^2}}}({2Inx+\frac{{1-{x^2}}}{x}})>m$,令$φ(x)=2Inx+\frac{{1-{x^2}}}{x}$$φ'(x)=\frac{2}{x}-\frac{1}{x^2}-1=-{({\frac{1}{x^2}-1})^2}≤0$,根据函数的单调性求出m的范围即可.

解答 解:(1)$f'(x)=\frac{2}{x}+a+\frac{4f'(2)}{x^2}$,令x=2,∴f'(2)=1+a+f'(2),
∴a=-1,设切点为(2,2ln2+2a-2f'(2)),
则y-(2ln2+2a-2f'(2))=f'(2)(x-2),
代入(-4,2ln2)得:2ln2-2ln2-2a+2f'(2)=-6f'(2),
∴$f'(2)=-\frac{1}{4}$,
∴$f'(x)=\frac{2}{x}-1-\frac{{-{{({x-1})}^2}}}{x^2}≤0$,
∴f(x)在(0,+∞)单调递减;
(2)$\frac{2xInx}{{1-{x^2}}}>mx-1$恒成立$\frac{1}{{1-{x^2}}}({2Inx+\frac{{1-{x^2}}}{x}})>m$,
令$φ(x)=2Inx+\frac{{1-{x^2}}}{x}$$φ'(x)=\frac{2}{x}-\frac{1}{x^2}-1=-{({\frac{1}{x^2}-1})^2}≤0$,
∴φ(x)在(0,+∞)单调递减,
∵φ(1)=0,
∴$\left\{\begin{array}{l}x∈({0,1}),φ(x)>0\\ x∈({1,+∞}),φ(x)<0\end{array}\right.$,
∴$\frac{1}{{1-{x^2}}}φ(x)$在(0,+∞)恒大于0,
∴m≤0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow a=({\sqrt{3}sinx,cosx+sinx}),\overrightarrow b=({2cosx,sinx-cosx}),f(x)=\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)的单调区间;
(2)当$x∈[{\frac{5π}{24},\frac{5π}{12}}]$时,对任意的t∈R,不等式mt2+mt+3≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2017年某市开展了“寻找身边的好老师”活动,市六中积极行动,认真落实,通过微信关注评选“身边的好老师”,并对选出的班主任工作年限不同的五位“好老师”的班主任的工作年限和被关注数量进行了统计,得到如下数据:
班主任工作年限x(单位:年)4681012
被关注数量y(单位:百人)1020406050
(1)若”好老师”的被关注数量y与其班主任的工作年限x满足线性回归方程,试求回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并就此分析:“好老师”的班主任工作年限为15年时被关注的数量;
(2)若用$\frac{y_i}{x_i}$(i=1,2,3,4,5)表示统计数据时被关注数量的“即时均值”(四舍五入到整数),从“即时均值”中任选2组,求这2组数据之和小于8的概率.(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知Tn为数列$\left\{{\frac{{{2^n}+1}}{2^n}}\right\}$的前n项和,若n>T10+1013恒成立,则整数n的最小值为(  )
A.1026B.1025C.1024D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,2cos2A+3=4cosA.
(1)求角A的大小;
(2)若a=2,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是(  )
A.40B.60C.80D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.
(Ⅰ) 求图中x的值;
(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{lnx}{x}$.
(1)求f(x)的极值;
(2)当0<x<e时,求证:f(e+x)>f(e-x);
(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f(x2)),中点横坐标为x0,证明:f'(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在直角梯形ABEF中,将DCEF沿CD折起使∠FDA=60°,得到一个空间几何体.
(1)求证:AF⊥平面ABCD;
(2)求三棱锥E-BCD的体积.

查看答案和解析>>

同步练习册答案