【题目】设函数f(x)=2cos2x+
sin2x﹣1.
(1)求f(x)的最大值及此时的x值
(2)求f(x)的单调减区间
(3)若x∈[﹣
,
]时,求f(x)的值域.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
底面
,底面
是直角梯形,
,
,
,
是
上的点.
![]()
(Ⅰ)求证:平面
⊥平面
;
(Ⅱ)若
是
的中点,且二面角
的余弦值为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次数学考试中,第22题和第23题为选做题,规定每位考生必须且只须在其中选做一题,现有甲、乙、丙、丁4名考生参加考试,其中甲、乙选做第22题的概率均为
,丙、丁选做第22题的概率均为
.
(Ⅰ)求在甲选做第22题的条件下,恰有两名考生选做同一道题的概率;
(Ⅱ)设这4名考生中选做第22题的学生个数为X,求X的概率分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设在平面上有两个向量a=(cos 2α,sin 2α)(0≤α<π),b=
,a与b不共线.
(1)求证:向量a+b与a-b垂直;
(2)当向量
a+b与a-
b的模相等时,求α的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限
(单位:年,
)和所支出的维护费用
(单位:万元)厂家提供的统计资料如下:
![]()
(1)请根据以上数据,用最小二乘法原理求出维护费用
关于
的线性回归方程
;
(2)若规定当维护费用
超过13.1万元时,该批空调必须报废,试根据(1)的结论求该批空调使用年限的最大值.
参考公式:最小二乘估计线性回归方程
中系数计算公式:
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
为参数),以坐标原点
为极点,以
轴非负半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的极坐标方程及直线
的直角坐标方程;
(2)设直线
与曲线
交于
两点,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com