【题目】设在平面上有两个向量a=(cos 2α,sin 2α)(0≤α<π),b=
,a与b不共线.
(1)求证:向量a+b与a-b垂直;
(2)当向量
a+b与a-
b的模相等时,求α的大小.
科目:高中数学 来源: 题型:
【题目】已知椭圆
上的点到两个焦点的距离之和为
,短轴长为
,直线
与椭圆
交于
、
两点.
(1)求椭圆
的方程;
(2)若直线
与圆
相切,探究
是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的方程为
+
=1,A、B为椭圆C的左、右顶点,P为椭圆C上不同于A、B的动点,直线x=4与直线PA、PB分别交于M、N两点;若D(7,0),则过D、M、N三点的圆必过x轴上不同于点D的定点,其坐标为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
()的焦距为4,左、右焦点分别为
,且
与抛物线
: ![]()
的交点所在的直线经过
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
的直线
与
交于
两点,与抛物线
无公共点,求
的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点. ![]()
(1)求证:直线BD1∥平面PAC;
(2)求证:直线PB1⊥平面PAC.
(3)求三棱锥B﹣PAC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2cos2x+
sin2x﹣1.
(1)求f(x)的最大值及此时的x值
(2)求f(x)的单调减区间
(3)若x∈[﹣
,
]时,求f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标系,已知点
的直角坐标为
,若直线
的极坐标方程为
曲线
的参数方程是
(
为参数).
(1)求直线
和曲线
的普通方程;
(2)设直线
和曲线
交于
两点,求![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一企业从某生产线上随机抽取
件产品,测量这些产品的某项技术指标值
,得到的频率分布直方图如图.
![]()
(1)估计该技术指标值
平均数
;
(2)在直方图的技术指标值分组中,以
落入各区间的频率作为
取该区间值的频率,若
,则产品不合格,现该企业每天从该生产线上随机抽取
件产品检测,记不合格产品的个数为
,求
的数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且![]()
(1)求证:不论
为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时,平面BEF⊥平面ACD ?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com