精英家教网 > 高中数学 > 题目详情

如图,在正方体ABCDA1B1C1D1中,EF、G为棱ADAB、A1A的中点.

(1)求证:平面EFG∥平面CB1D1

(2)求证:平面CAA1C1⊥平面CB1D1   ;

(3)求异面直线FGB1C所成的角

(3) 600


解析:

(1)证明:连结BD.在长方体中,对角线.又 EF为棱ADAB的中点, . .同理可证:GE// B1C  ,EF∩GE=E                         

  面EFG∥平面CB1D1.                  

(2) 在长方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1

 AA1B1D1.

在正方形A1B1C1D1中,A1C1B1D1 B1D1⊥平面CAA1C1.                 

 B1D1平面CB1D1平面CAA1C1⊥平面CB1D1

(3) 由(1)知GE// B1C,异面直线FGB1C所成的角为600

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案