精英家教网 > 高中数学 > 题目详情
7.某中学为了解学校办公楼每天的用电量x(度)与当天最高气温x(℃)之间的关系,随机统计了近期某4天的有关数据如下表示:
最高气温x(℃)104-2-8
用电量y(度)20445680
据回归分析,上述4线样本数据具有线性相关关系,计算得回归直线的斜率b=-3.2,由回归方程可以预报最高气温为6℃时当天的用电量约为(  )
A.32度B.34度C.36度D.38度

分析 首先求出x,y的平均数,根据所给的线性回归方程知道b的值,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a的一元一次方程,解方程求出a值,再将x=6代入可得答案.

解答 解:由表格知样本中心点为$(\overline{x},\overline{y})=(\frac{4}{4},\frac{200}{4})=(1,50)$,
则回归方程是$\widehat{y}$=-3.2x+a,
将(1,50)点代入得:a=53.2,
则回归方程是$\widehat{y}$=-3.2x+53.2,
则当x=6时,y的预测值为$\hat{y}=-3.2×6+53.2=34$,
故选:B.

点评 本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是一个运算量比较小的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=a2ln x-x2+ax(a>0)
(1)求f(1)的值及函数f(x)的单调区间;
(2)若对x∈[1,e]的每一个值,e-1≤f(x)≤e2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C的方程为x2-y2-2x-4y+m=0
(1)若圆C的半径为2,求m的值
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=$\frac{4\sqrt{5}}{5}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知sinx+cosx=$\sqrt{1+sin2x}$,则x的取值范围是(  )
A.[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ](k∈Z)B.[$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈Z)
C.[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈Z)D.[$\frac{π}{4}$+2kπ,$\frac{5π}{4}$+2kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)>0,试判断函数f(x)的单调性,并求使不等式f(sin2θ+cos2θ)+f(1-tcosθ)<0对所有的θ∈(0,$\frac{π}{2}$)均成立的t的取值范围;
(2)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值为-1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设复数z=1-i,若实数a,b满足z2+az+b=$\overline{z}$,则|a+bi|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$=(3,1),$\overrightarrow{c}$=(x,3),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.运行如图的程序框图,则输出s的结果是(  )
A.$\frac{25}{24}$B.$\frac{1}{6}$C.$\frac{3}{4}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2}{3}$B.1C.3D.6

查看答案和解析>>

同步练习册答案