(本小题满分16分)
如图,多面体中,两两垂直,平面平面,
平面平面,.
(1)证明四边形是正方形;
(2)判断点是否四点共面,并说明为什么?
(3)连结,求证:平面.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且==λ (0<λ<1).
(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时?平面BEF⊥平面ACD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)求二面角C-PB-D的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图,在三棱柱ABC—A1B1C1中,侧面BB1C1C,已知AB=BC=1,BB1=2,,E为CC1的中点。
(1)求证:平面ABC;
(2)求二面角A—B1E—B的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E—DF—C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是( )
A.a,a+b,a-b | B.b,a+b,a-b |
C.c,a+b,a-b | D.a+b,a-b,a+2b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com