精英家教网 > 高中数学 > 题目详情

叙述并证明直线与平面垂直的判定定理.

解:定理叙述:
若一条直线垂直于一个平面内两条相交直线,则该直线与此平面垂直。   
证明:已知:直线,, 
求证:         
    
证明:设p是平面内任意一条直线,则只需证
设直线的方向向量分别是
只需证
 不共线
 直线在同一平面内,
根据平面向量基本定理存在实数使得



所以直线垂直于平面                  

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在三棱柱中,侧棱,点的中点,
(1)求证:∥平面
(2)为棱的中点,试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体是四棱锥,△为正三角形,.
(1)求证:
(2)若∠,M为线段AE的中点,求证:∥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正四棱柱中,设
若棱上存在点满足平面,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
如图,多面体中,两两垂直,平面平面
平面平面.
(1)证明四边形是正方形;
(2)判断点是否四点共面,并说明为什么?
(3)连结,求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图4,在三棱柱中,底面是边长为2的正三角形,侧棱长为3,且侧棱,点的中点.

(1)求证:
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平行四边形中,沿折起到的位置,使平面平面  
(I)求证:(Ⅱ)求三棱锥的侧面积。
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在多面体ABCDE中,AE⊥面ABC,DB//AE,且AC=AB=BC=AE=1,BD=2,F为CD中点。
(1)求证:EF⊥平面BCD;
(2)求多面体ABCDE的体积;
(3)求平面ECD和平面ACB所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在空间直角坐标系中,已知.若分别是三棱锥坐标平面上的正投影图形的面积,则(   )

A. B.
C. D.

查看答案和解析>>

同步练习册答案