精英家教网 > 高中数学 > 题目详情

如图,平行四边形中,沿折起到的位置,使平面平面  
(I)求证:(Ⅱ)求三棱锥的侧面积。
 

⑴△ABD中,BD=  2’
∴AB2+BD2=AD2       ∴AB⊥BD,CD⊥BD                     3’
∵平面平面,ED⊥BD, 平面EDB∩平面=BD,BD平面
∴ED⊥平面                                         6’
∴ED⊥AD                                             7’
⑵△EBD,ED=2,EB=4
∵AB⊥BD,AB⊥ED,BD∩ED="D      "  ∴AB⊥平面EBD      
∴AB⊥BE
∴S侧=

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(14分)如图,在直三棱柱中,,点的中点.
(Ⅰ)求证:
(Ⅱ)求证:平面
(Ⅲ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)求二面角C-PB-D的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

叙述并证明直线与平面垂直的判定定理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E—DF—C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,平面,且,点是棱的中点,点在棱上移动.
(Ⅰ)当点的中点时,试判断直线与平面的关系,并说明理由;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知中∠ACB=90°,AS=BC=1,AC=2,SA⊥面ABC,AD⊥SC于D,

(1)求证: AD⊥面SBC;
(2)求二面角A-SB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.求证:四边形BCFE是梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在正三棱柱ABC—A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为(  )

A.30° B.45° C.60° D.90°

查看答案和解析>>

同步练习册答案