精英家教网 > 高中数学 > 题目详情

已知为抛物线的焦点,点为抛物线内一定点,点为抛物线上一动点,最小值为8.
(1)求该抛物线的方程;
(2)若直线与抛物线交于两点,求的面积.

(1).(2)

解析试题分析:(1)设为点的距离,则由抛物线定义,
所以当点为过点且垂直于准线的直线与抛物线的交点时,
取得最小值,即,解得 
∴抛物线的方程为
(2)设,联立
显然 

.  
到直线的距离为,

考点:本题主要考查抛物线的定义,直线与抛物线的位置关系,点到直线的距离公式,三角形面积公式。
点评:中档题,涉及“抛物线内一定点,点为抛物线上一动点,求最小值”问题,往往利用抛物线定义,“化折为直”。涉及抛物线与直线位置关系问题,往往利用韦达定理。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点到两点的距离之和等于4,设点的轨迹为
(Ⅰ)写出的方程;
(Ⅱ)设直线交于两点.k为何值时?此时的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的离心率且点在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设抛物线)的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线轴上方的一个交点为.

(1)当时,求椭圆的方程;
(2)在(1)的条件下,直线经过椭圆的右焦点,与抛物线交于,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;
(3)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且构成等差数列.

(1)求椭圆的方程;
(2)如图7,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于点C,连接BC、AC。

(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合)。过点E作直线l平行BC,交AC于点D。设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为

(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,
,.

(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案