精英家教网 > 高中数学 > 题目详情
16.某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为(  )
A.3+5B.3×5C.35D.53

分析 根据题意,某人参加该项测试,第一关有3种测试方案,即有3种测试方法,第二关有5种测试方案,即有5种测试方法,由分步计数原理计算可得答案.

解答 解:根据题意,某人参加该项测试,
第一关有3种测试方案,即有3种测试方法,第二关有5种测试方案,即有5种测试方法,
则有3×5种不同的测试方法,
故选:B.

点评 本题考查分步计数原理的运用,根据题意求出每一的情况数目,由分步计数原理直接计算即可,属简单题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.观察下列等式:
n•C${\;}_{n-1}^{0}$=1$•{C}_{n}^{1}$,
n$•{C}_{n-1}^{1}$=2$•{C}_{n}^{2}$,
n$•{C}_{n-1}^{2}$=3$•{C}_{n}^{3}$,
n$•{C}_{n-1}^{3}$=4$•{C}_{n}^{4}$,
n$•{C}_{n-1}^{4}$=5$•{C}_{n}^{5}$,

则归纳出一般的结论为n$•{C}_{n-1}^{k}$=(k+1)$•{C}_{n-1}^{k+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知0<φ<π,且满足sin(φ+$\frac{π}{4}$)=sin(φ-$\frac{π}{4}$),设函数f(x)=sin(2x+$\frac{φ}{2}$).
(1)求φ的值;
(2)设0<α<$\frac{π}{2}$,且cosα=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,已知a1=2,a3+a5=10,则a7等于(  )
A.5B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin2x+sinxcosx-2.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.复数z=(3m-2)+(m-8)i,m∈R,
(1)m为何值时,z是纯虚数?
(2)若C${\;}_{m}^{2}$=15(m∈N*),求m的值,并指出此时复数z在复平面上对应的点位于第几象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若命题p:?x∈R,x=sinx,则¬p为?x∈R,x≠sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(sinθ,-2)与$\overrightarrow{b}$(1,cosθ)互相垂直,其中θ∈(0,$\frac{π}{2}$).
(1)求sinθ和cosθ的值;
(2)若sin(θ-φ)=$\frac{2\sqrt{5}}{5}$,0<φ<$\frac{π}{2}$,求sinφ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知角θ的终边过点P(-12,5),则角θ的余弦值为-$\frac{12}{13}$.

查看答案和解析>>

同步练习册答案