精英家教网 > 高中数学 > 题目详情
8.若命题p:?x∈R,x=sinx,则¬p为?x∈R,x≠sinx.

分析 利用特称命题的否定是全称命题,写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题p:?x∈R,x=sinx,则¬p为?x∈R,x≠sinx.
故答案为:?x∈R,x≠sinx

点评 本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知某简谐运动的图象经过点(0,2),且对应函数的解析式为f(x)=4sin($\frac{π}{3}$x+φ)(|φ|<$\frac{π}{2}$),则该简谐运动的初相φ的值为(  )
A.φ=$\frac{π}{3}$B.φ=$\frac{π}{4}$C.φ=$\frac{π}{5}$D.φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin2x-2sinxcosx+3cos2x.
(1)求函数f(x)的最小正周期;
(2)当$x∈[\frac{5π}{24},\frac{11π}{24}]$时,求函数f(x)的值域;
(3)当x∈(-$\frac{9π}{8}$,-$\frac{7π}{8}$)时,设经过函数f(x)图象上任意不同两点的直线的斜率为k,试判断k值的符号,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为(  )
A.3+5B.3×5C.35D.53

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,AB是半径为r的半圆形广场的直径,在AB的延长线上一点P处,有一停车场,且BP=r,D为半圆上(靠近停车场一侧)的一点,在点D和P之间修建一条折线形道路DEP,已知DE∥BP,并且DE的长等于点D到AB距离DH的一半,设∠BOD=θ(O为半圆的圆心),f(θ)=$\frac{HP}{DE}$.
(1)求函数f(θ)的解析式;
(2)求f(θ)的最小值及对应的θ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(x+1)-ax(a∈R).
(1)若曲线y=f(x)过点P(1,ln2-1),求曲线y=f(x)在点P处的切线方程;
(2)讨论f(x)在定义域上的单调性;
(3)是否存在常数a∈N,使得a≥(1+$\frac{1}{x}$)x对任意正实数x都成立?若存在,试求出a的最小值并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,在△ABC中,若$\overrightarrow{BE}$=2$\overrightarrow{EA}$,$\overrightarrow{AD}$=2$\overrightarrow{DC}$,$\overrightarrow{DE}$=λ($\overrightarrow{CA}$-$\overrightarrow{BC}$),则实数λ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(1+x)6的展开式中含x3项的系数为20;该展开式的二项式系数和是64.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(k,3),若($\overrightarrow{a}+2\overrightarrow{b}$)∥($2\overrightarrow{a}-\overrightarrow{b}$),则k=6.

查看答案和解析>>

同步练习册答案