分析 (1)由题意可得HD=rsinθ,OH=rcosθ,从而可得HP=2r-rcosθ,DE=$\frac{1}{2}$HD=$\frac{1}{2}$rsinθ,从而化简f(θ)=$\frac{HP}{DE}$=$\frac{2r-rcosθ}{\frac{1}{2}rsinθ}$=$\frac{4-2cosθ}{sinθ}$(0<θ≤$\frac{π}{2}$);
(2)求导f′(θ)=$\frac{2sinθsinθ-(4-2cosθ)cosθ}{si{n}^{2}θ}$=$\frac{2-4cosθ}{si{n}^{2}θ}$;从而由导数判断函数的单调性再求最小值及最小值点.
解答 解:(1)由题意得,
HD=rsinθ,OH=rcosθ;
故HP=2r-rcosθ,DE=$\frac{1}{2}$HD=$\frac{1}{2}$rsinθ,
故f(θ)=$\frac{HP}{DE}$=$\frac{2r-rcosθ}{\frac{1}{2}rsinθ}$=$\frac{4-2cosθ}{sinθ}$(0<θ≤$\frac{π}{2}$);
(2)∵f(θ)=$\frac{4-2cosθ}{sinθ}$,
∴f′(θ)=$\frac{2sinθsinθ-(4-2cosθ)cosθ}{si{n}^{2}θ}$=$\frac{2-4cosθ}{si{n}^{2}θ}$;
∴当θ∈(0,$\frac{π}{3}$)时,f′(θ)<0,
当θ∈($\frac{π}{3}$,$\frac{π}{2}$]时,f′(θ)>0;
故f(θ)=$\frac{4-2cosθ}{sinθ}$在(0,$\frac{π}{3}$)上单调递减,在[$\frac{π}{3}$,$\frac{π}{2}$]上单调递增;
故当θ=$\frac{π}{3}$时,f(θ)取得最小值f($\frac{π}{3}$)=2$\sqrt{3}$.
点评 本题考查了函数在实际问题中的应用及导数的综合应用,同时考查了三角函数的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{π}{2}$,$\frac{π}{2}}$) | B. | (0,π) | C. | ($\frac{π}{2}$,$\frac{3π}{2}}$) | D. | (π,2π) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com