精英家教网 > 高中数学 > 题目详情
P在平面ABC的射影为O,且PAPBPC两两垂直,那么O是△ABC的(    )
A.内心B.外心
C.垂心D.重心
C
由于PCPAPCPB,所以PC⊥平面PAB
PCAB
P在平面ABC的射影为O,连CO,则COPC在平面ABC的射影,根据三垂线定理的逆定理,得:COAB
同理可证AOBCO是△ABC的垂心,答案选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,,直线分别交于点
,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分别是AB、PC的中点.求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面内两直线有三种位置关系:相交,平行与重合。已知两个相交平面与两直线,又知内的射影为,在内的射影为。试写出满足的条件,使之一定能成为是异面直线的充分条件                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设S为平面外的一点,SA=SB=SC,,若,求证:平面ASC平面ABC。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥中,底面是正方形,侧棱底面的中点。
(1)证明:
(2)求为轴旋转所围成的几何体体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,△PAC与△ABC是均以AC为斜边的等腰直角三角形,AC=4,E,F,O分别为PA,PB,AC的中点,G为OC的中点,且PO⊥平面ABC.
(1)证明:FE平面BOG;
(2)求二面角EO-B-FG的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,BC=2,AB=1,PA丄平面ABCD,BEPA,BE=
1
2
PA
,F为PA的中点.
(I)求证:DF平面PEC
(II)若PE=
2
,求平面PEC与平面PAD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直四棱柱A1B1C1D1ABCD中,当底面四边形ABCD满足条件        时,有A1CB1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).

查看答案和解析>>

同步练习册答案