精英家教网 > 高中数学 > 题目详情
16.已知点P在抛物线y2=4x上,则点P到直线l1:4x-3y+11=0的距离和到l2:x=-1的距离之和的最小值为(  )
A.$\frac{37}{16}$B.3C.2D.$\frac{11}{5}$

分析 如图所示,过点P分别作PM⊥l1,PN⊥l2,垂足分别为M,N.设抛物线的焦点为F,由抛物线的定义可得|PN|=|PF|,求|PM|+|PN|转化为求|PM|+|PF|,当三点M,P,F共线时,|PM|+|PF|取得最小值.利用点到直线的距离公式即可得出.

解答 解:如图所示,
过点P分别作PM⊥l1,PN⊥l2,垂足分别为M,N.
设抛物线的焦点为F(1,0),由抛物线的定义可得|PN|=|PF|,
∴|PM|+|PN|=|PM|+|PF|,当三点M,P,F共线时,
|PM|+|PF|取得最小值.
其最小值为点F到直线l1的距离,∴|FM|=$\frac{|4-0+11|}{\sqrt{16+9}}$=3.
故选B.

点评 本题考查了抛物线的定义及其性质、三点共线、点到直线的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{1}{xlnx}$(x>0且x≠1),求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax+1nx(a∈R),g(x)=ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:当a=0时,g(x)>f(x)+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=ex-e-x-2x,下列结论正确的是(  )
A.f(2x)min=f(0)B.f(2x)max=f(0)
C.f(2x)在(-∞,+∞)上递减,无极值D.f(2x)在(-∞,+∞)上递增,无极值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,正方体ABCD-A1B1C1D1的棱长为$\sqrt{3}$,动点P在对角线BD1上,过点P作垂直于BD1的平面α,记平面α截正方体得到的截面多边形(含三角形)的周长为y=f(x),设BP=x,x∈(0,3),关于函数y=f(x):
(Ⅰ)下列说法中,正确的是②③
①当x∈(1,2)时,截面多边形为正六边形;
②函数f(x)的图象关于$x=\frac{3}{2}$对称;
③任取x1,x2∈[1,2]时,f(x1)=f(x2).
(Ⅱ)函数y=f(x)单调区间为单调递增区间(0,1),单调递减区间(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆${C_1}:\frac{x^2}{2}+{y^2}=1$
(1)求证椭圆C1在其上一点A(x0,y0),A处的切线方程为x0x+2y0y-2=0.
(2)如图,过椭圆C2:$\frac{x^2}{8}+\frac{y^2}{2}=1$上任意一点P作C1的两条切线PM和PN,切点分别为M,N,当点P在椭圆C2上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-$\frac{1}{2}$kx2-2x+2,f′(x)是的导函数.
(1)求f′(x)的单调区间;
(2)若k=1,证明:当x>0时,f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在四面体P-ABC的四个面中,是直角三角形的面至多有(  )个.
A.0个B.1个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)的导函数为f′(x),且f′(x)<f(x)对于x∈R恒成立,则(  )
A.e2f(-2)>f(0),f(2)>e2f(0)B.e2f(-2)<f(0),f(2)<e2f(0)
C.e2f(-2)>f(0),f(2)<e2f(0)D.e2f(-2)<f(0),f(2)>e2f(0)

查看答案和解析>>

同步练习册答案