精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系xOy内有三个定点A(2,2),B(1,3),C(1,1),记△ABC的外接圆为E.
(1)求边AB的中线所在的直线方程
(2)求圆E的方程;
(3)若过原点O的直线l与圆E相交所得弦的长为$\sqrt{2}$,求直线l的方程.

分析 (1)先求出AB的中点M坐标,再求出kMC,由此能求出AB边中线所在直线方程.
(2)设△ABC的外接圆E的圆心D(a,b),半径为r(r>0).则E为:(x-a)2+(y-b)2=r2.由此利用代入法能求出圆E的方程.
(3)设直线l的方程为y=kx,设l与圆E相交于点M,N,过圆心D作直线l的垂线,垂足为P,由此利用两点间距离公式、点到直线距离公式,结合已知条件能求出直线l的方程.

解答 解:(1)∵A(2,2),B(1,3),
∴AB的中点M坐标为($\frac{3}{2},\frac{5}{2}$),(1分)
∵C(1,1),∴kMC=$\frac{\frac{5}{2}-1}{\frac{3}{2}-1}$=3,(2分)
∴AB边中线所在直线方程为:y-$\frac{5}{2}=3(x-\frac{3}{2})$,
整理得:3x-y-2=0.(4分)
(2)设△ABC的外接圆E的圆心D(a,b),半径为r(r>0).
则E为:(x-a)2+(y-b)2=r2
由题意,得$\left\{\begin{array}{l}{(2-a)^2}+{(2-b)^2}={r^2}\\{(1-a)^2}+{(3-b)^2}={r^2}\\{(1-a)^2}+{(1-b)^2}={r^2}\end{array}\right.$,
解得$\left\{\begin{array}{l}a=1\\ b=2\\ r=1\end{array}\right.$,所以圆E的方程:(x-1)2+(y-2)2=1.…(9分)
(Ⅱ)设直线l的方程为y=kx
如图,设l与圆E相交于点M,N,过圆心D作直线l的垂线,垂足为P,
所以$|MN|=2|PN|=\sqrt{2}$,即$|PN|=\frac{{\sqrt{2}}}{2}$,
在 Rt△DPN中,|DN|=1,$|PN|=\frac{{\sqrt{2}}}{2}$,
所以$|DP|=\sqrt{|DN{|^2}-|PN{|^2}}=\frac{{\sqrt{2}}}{2}$,
又因为圆E的圆心到直线l的距离$|DP|=\frac{|k-2|}{{\sqrt{{k^2}+1}}}$.
所以$|DP|=\frac{|k-2|}{{\sqrt{{k^2}+1}}}=\frac{{\sqrt{2}}}{2}$,
解得k=1或k=7,
故直线l的方程为y=x或y=7x.…(14分)

点评 本题考查直线方程和圆的方程的求法,是中档题,解题时要认真审题,注意两点间距离公式、点到直线距离公式、中点坐标公式、斜率公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.不等式x2-2mx+1≥0对一切实数x都成立,则实数m的取值范围是-1≤m≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若动点P到点$F({0,-\frac{1}{4}})$的距离比它到直线$y=\frac{5}{4}$的距离小1.
(1)求点P的轨迹E的方程;
(2)若直线y=mx-4与轨迹E交于A、B两点,且$|AB|=3\sqrt{6}$.求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题:
①命题“?x>0,x2-x≤0”的否定是“?x≤0,x2-x>0
②已知数列{an},则“an,an+1,an+2成等比数列”是“an+12=anan+2”的充要条件
③“若xy≠0,则x2+y2≠0”的逆命题
④若p∧q为假命题,则p,q均为假命题
其中假命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$f(x)=-\sqrt{4+\frac{1}{x^2}}$,数列{an}的前n项和为Sn,点${P_n}({a_n},-\frac{1}{{{a_{n+1}}}})$,在曲线y=f(x)上(n∈N*),且a1=1,an>0.
(1)求数列{an}的通项公式;
(2)数列{bn}的前n项和为Tn,且满足$\frac{{{T_{n+1}}}}{a_n^2}=\frac{T_n}{{a_{n+1}^2}}+16{n^2}-8n-3$,求出b1的值,使得数列{bn}是等差数列;(3)求证:${S_n}>\frac{1}{2}(\sqrt{4n+1}-1),n∈{N^*}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设F1和F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,若F1,F2,P(0,-2b)是正三角形的三个顶点,则双曲线的离心率为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列命题中:
①△ABC中,A>B?sinA>sinB
②数列{an}的前n项和Sn=n2-2n-1,则数列{an}是等差数列.
③锐角三角形的三边长分别为3,7,a,则a的取值范围是2$\sqrt{10}$$<a<\sqrt{58}$.
④若Sn=2-an,则{an}是等比数列
真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=lnx-ax+1.
(1)求f(x)的极值;
(2)当a>0时,恒有f(x)≤0,求a范围,在此情况下,4x-3•2x+3≤a恒成立,求x范围;
(3)证明:$\frac{{ln{2^2}}}{2^2}+\frac{{ln{3^2}}}{3^2}+…+\frac{{ln{n^2}}}{n^2}<\frac{{2{n^2}-n-1}}{2(n+1)}(n∈N,n≥2)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线的渐近线方程为5x±12y=0,则以双曲线的顶点为焦点,以双曲线的焦点为顶点的椭圆的离心率为$\frac{12}{13}$.

查看答案和解析>>

同步练习册答案