精英家教网 > 高中数学 > 题目详情
14.已知某产品的广告费x(单位:万元)与销售额y(单位:万元)具有线性相关关系,其统计数据如下表:
X3456
Y25304045
由上表可得线性回归方程y=$\widehat{b}$x+a,据此模型预报广告费用为8万元时的销售额是(  )
A.59.5B.52.5C.56D.63.5

分析 计算$\overline{x}$、$\overline{y}$,求出回归系数$\widehat{b}$、$\stackrel{∧}{a}$,写出线性回归方程,利用回归方程计算x=8时$\stackrel{∧}{y}$的值.

解答 解:由表中数据可得,
$\overline{x}$=$\frac{1}{4}$×(3+4+5+6)=4.5,
$\overline{y}$=$\frac{1}{4}$×(25+30+40+45)=35,
回归系数$\widehat{b}$=$\frac{{{\sum_{i=1}^{4}x}_{i}y}_{i}-4\overline{x}\overline{y}}{{{\sum_{i=1}^{4}x}_{i}}^{2}-{4\overline{x}}^{2}}$
=$\frac{3×25+4×30+5×40+6×45-4×4.5×35}{{3}^{2}{+4}^{2}{+5}^{2}{+6}^{2}-4{×4.5}^{2}}$
=7,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$=35-7×4.5=3.5,
∴线性回归方程为$\stackrel{∧}{y}$=7x+3.5,
∴当x=8时,$\stackrel{∧}{y}$=7×8+3.5=59.5(万元).
故选:A.

点评 本题考查了回归直线方程的求法与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,∠ADC=90°,AD∥BC,$\frac{1}{3}$BC=$\frac{1}{2}$CD=AD=1,PA⊥平面ABCD,PA=2AD,E是线段PD上的点,设PE=λPD,F是BC上的点,且AF∥CD
(Ⅰ)若λ=$\frac{2}{3}$,求证:PB∥平面AEF
(Ⅱ)三棱锥P-AEF的体积为$\frac{1}{3}$时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题p:?x<0,x3<0,那么¬p是(  )
A.?x<0,x3≥0B.?x0>0,x03≤0C.?x0<0,x03≥0D.?x>0,x3≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xlnx,e为自然对数的底数.
(Ⅰ)求曲线y=f(x)在x=e-3处的切线方程;
(Ⅱ)关于x的不等式f(x)≥λ(x-1)在(0,+∞)恒成立,求实数λ的取值范围.
(Ⅲ)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1-x2|<$\frac{3}{2}$a+1+$\frac{1}{2{e}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设△ABC的内角A、B、C所对的边分别为a、b、c且acosC-$\frac{1}{2}$c=b.若$a=2\sqrt{3}$则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2|x+a|+|x-$\frac{1}{a}$|(a≠0).
(1)当a=-1时,解不等式f(x)<4;
(2)求函数g(x)=f(x)+f(-x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,a,b,c分别为内角A,B,C的对边,且a2=3b2+3c2-2$\sqrt{3}$bcsinA,则C的值为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.经市场调查,某商品每吨的价格为x(1<x<14)万元时,该商品的月供给量为y1吨,y1=ax+$\frac{7}{2}$a2-a(a>0):月需求量为y2吨,y2=-$\frac{1}{224}$x2-$\frac{1}{112}$x+1,当该商品的需求量大于供给量时,销售量等于供给量:当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知a=$\frac{1}{7}$,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.五本不同的书在书架上排成一排,其中甲,乙两本必须连排,而丙,丁两本不能连排,则不同的排法共(  )
A.12种B.20种C.24种D.48种

查看答案和解析>>

同步练习册答案