精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极小值10,则$\frac{b}{a}$的值为-$\frac{1}{2}$.

分析 由于f′(x)=3x2+2ax+b,依题意知,f′(1)=3+2a+b=0,f(1)=1+a+b-a2-7a=10,于是有b=-3-2a,代入f(1)=10即可求得a,b,从而可得答案.

解答 解:∵f(x)=x3+ax2+bx-a2-7a,
∴f′(x)=3x2+2ax+b,
又f(x)=x3+ax2+bx-a2-7a在x=1处取得极小值10,
∴f′(1)=3+2a+b=0,f(1)=1+a+b-a2-7a=10,
∴a2+8a+12=0,
∴a=-2,b=1或a=-6,b=9.
当a=-2,b=1时,f′(x)=3x2-4x+1=(3x-1)(x-1),
当$\frac{1}{3}$<x<1时,f′(x)<0,当x>1时,f′(x)>0,
∴f(x)在x=1处取得极小值,与题意符合;
当a=-6,b=9时,f′(x)=3x2-12x+9=3(x-1)(x-3)
当x<1时,f′(x)>0,当1<x<3时,f′(x)<0,
∴f(x)在x=1处取得极大值,与题意不符;
∴$\frac{b}{a}$=-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.

点评 本题考查函数在某点取得极值的条件,求得f′(x)=3x2+2ax+b,利用f′(1)=0,f(1)=10求得a,b是关键,考查分析、推理与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}是公差不为0的等差数列,a2=3,且a5是a4,a8的等比中项.
(1)求数列{an}的通项公式;
(2)设Sn为数列{an}的前n项和,求使an<Sn成立的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F1、F2是椭圆C的两个焦点,P为椭圆上一点,若$\overrightarrow{P{F}_{1}}$⊥$\overrightarrow{P{F}_{2}}$,且△PF1F2的面积和周长均为为16,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=xlnx.
(Ⅰ)求曲线y=f(x) 在点(1,0)处的切线方程;
(Ⅱ)设函数g(x)=f(x)-a(x-1)其中a∈R,求函数g(x) 在[1,e]上的最小值.(其中e 为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知|${\overrightarrow a}$|=1,|${\overrightarrow b}$|=2,$\overrightarrow a$•($\overrightarrow b$-$\overrightarrow a$)=0,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xoy中,已知曲线C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ为参数).以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xoy取相同的单位长度,建立极坐标系.已知直线l的极坐标方程为ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的$\sqrt{3}$,2倍后得到曲线C2,试写出曲线C2的参数方程和直线l的直角坐标方程;
(2)求曲线C2上求一点P,使P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知(x0,y0)是直线x+y=2k-1与圆x2+y2=k2+2k-3的公共点,则x0y0的取值范围是$[\frac{{11-6\sqrt{2}}}{4},\frac{{11+6\sqrt{2}}}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知正六棱柱的底面边长和侧棱长相等,体积为96$\sqrt{3}$,其三视图中的俯视图如图所示,则其左视图的面积是(  )
A.$8\sqrt{3}$B.16C.$16\sqrt{3}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln$\frac{x+1}{x-1}$.
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)>ln$\frac{m}{(x-1)(7-x)}$恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案