精英家教网 > 高中数学 > 题目详情
13.已知数列{an}是公差不为0的等差数列,a2=3,且a5是a4,a8的等比中项.
(1)求数列{an}的通项公式;
(2)设Sn为数列{an}的前n项和,求使an<Sn成立的所有n的值.

分析 (1)利用等比数列与等差数列的通项公式及其性质即可得出.
(2)由(1)可得:Sn=6n-n2.不等式an<Sn,即7-2n<6n-n2,化简解出即可得出.

解答 解:(1)设等差数列{an}的公差d≠0,∵a5是a4,a8的等比中项,∴${a}_{5}^{2}$=a4•a8,∴$({a}_{1}+4d)^{2}$=(a1+3d)(a1+7d),
化为:5d+2a1=0,又a1+d=3,联立解得:a1=5,d=-2,
∴an=5-2(n-1)=7-2n.
(2)由(1)可得:Sn=$\frac{n(5+7-2n)}{2}$=6n-n2
不等式an<Sn,即7-2n<6n-n2,化为:n2-8n+7<0,解得1<n<7.
∴n=2,3,4,5,6.
∴使an<Sn成立的所有n的值为2,3,4,5,6.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=a2lnx-x2+ax(a≠0),g(x)=(m-1)x2+2mx-1.
(1)求函数f(x)的单调区间;
(2)若a=1时,关于x的不等式f(x)≤g(x)恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f:x→x2是集合M到集合N的映射,若N={4,0,9},则M不可能是(  )
A.{0}B.{2,3}C.{0,1,2}D.{0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C的顶点在坐标原点O,焦点为F(1,0),经过点F的直线l与抛物线C相交于A、B两点.
(1)求抛物线C的标准方程;
(2)若△AOB的面积为4,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,输出的S值为(  )
A.12B.20C.40D.70

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,已知a1=1,2Sn=(n+1)an,n∈N*
(I)求数列{an}的通项公式;
(II)令bn=$\frac{1}{(n+2){a}_{n}}$,数列{bn}的前n和为Tn,试着比较Tn与$\frac{3}{4}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.非空集合G关于运算⊕满足:(1)对任意a,b∈G,都有a⊕b∈G;
(2)存在e∈G,使得对一切a∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.
现给出下列集合和运算:
①G={非负整数},⊕为整数的加法;
②G={偶数},⊕为整数的乘法;
③G={平面向量},⊕为平面向量的加法;
④G={二次三项式},⊕为多项式的加法;
⑤G={虚数},⊕为复数的乘法.
其中G关于运算⊕为“融洽集”的是(  )
A.①③B.②③C.①⑤D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知在等差数列中,a2=3,a5=6,则公差d=(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极小值10,则$\frac{b}{a}$的值为-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案