精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.
(1)求椭圆的方程;
(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使
(i)求证:直线OA与OB的斜率之积为定值;
(ii)求OA2+OB2
【答案】分析:(1)由已知中椭圆的离心率为,其焦点在圆x2+y2=1上我们可以求出a,b,c的值,进而得到椭圆的方程;
(2)(i)设A(x1,y1),B(x2,y2),M(x,y),由.可得x,y的坐标表达式,进而根据M在椭圆上,可得为定值.
(ii)由(i)中结论,可得y12+y22=1,及x12+x22=2,进而得到OA2+OB2
解答:解:(1)依题意,得  c=1.于是,a=,b=1.     …(2分)
所以所求椭圆的方程为. …(4分)
(2)(i)设A(x1,y1),B(x2,y2),
①,②.
又设M(x,y),因,故…(7分)
因M在椭圆上,故
整理得
将①②代入上式,并注意cosθsinθ≠0,得  
所以,为定值. …(10分)
(ii),故y12+y22=1.
,故x12+x22=2.
所以,OA2+OB2=x12+y12+x22+y22=3.  …(16分)
点评:本题主要考查圆、椭圆及直线的基础知识,考查运算能力及探究能力.第(2)问中,可以证明线段AB的中点恒在定椭圆x2+2y2=1上.后一问与前一问之间具有等价关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案