精英家教网 > 高中数学 > 题目详情
设函数y=f(x)在(0,+∞)上有定义,对于给定的正数K,定义函数fk(x)=
f(x),f(x)≤K
K,f(x)>K
,取函数f(x)=
5
2
x2-3x2lnx
,若对任意的x∈(0,+∞),恒有fk(x)=f(x),则K的最小值为______.
∵函数fk(x)=
f(x),f(x)≤K
K,f(x)>K

对任意的x∈(0,+∞),恒有fk(x)=f(x),
∴k≥f(x)最大值
由于f′(x)=5x-3x-6xlnx=2x-6xlnx,
令f′(x)=0,解得x=0(舍),或x=e
1
3

当0<xe
1
3
时,f′(x)>0,f(x)单调递增,
当x>e
1
3
时,f′(x)<0,f(x)单调递减.
故当x=e
1
3
时,f(x)取到最大值f(e
1
3
)=
3
2
e
2
3

故当k≥
3
2
e
2
3
时,恒有fk(x)=f(x).
因此K的最小值是
3
2
e
2
3

故答案为:
3
2
e
2
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数 fk(x)=
f(x),f(x)≤K
K,f(x)>K
,取函数f(x)=2-x-e-x.若对任意的x∈(+∞,-∞),恒有fk(x)=f(x),则(  )
A、K的最大值为2
B、K的最小值为2
C、K的最大值为1
D、K的最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数:fK(x)=
f(x)
1
f(x)
f(x)≤K
 
f(x)>K
,取函数f(x)=(
1
2
)|x|
,当K=
1
2
时,函数fK(x)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在(a,b)上的导数为f′(x),f′(x)在(a,b)上的导数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.若函数f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
为区间(-1,3)上的“凸函数”,则m=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)上满足f(-x)=f(4+x),f(4-x)=f(10+x),且在闭区间[0,7]上,f(x)=0仅有两个根x=1和x=3,则方程f(x)=0在闭区间[-2011,2011]上根的个数有
805
805

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数fk(x)=
f(x),f(x)≥K
K,f(x)<K
,取函数f(x)=2+x+e-x.若对任意的x∈(+∞,-∞),恒有fk(x)=f(x),则(  )

查看答案和解析>>

同步练习册答案