精英家教网 > 高中数学 > 题目详情
4.已知抛物线y2=4x和点M(6,0),O为坐标原点,直线l过点M,且与抛物线交于A,B两点.
(1)求$\overrightarrow{OA}$•$\overrightarrow{OB}$;
(2)若△OAB的面积等于12$\sqrt{10}$,求直线l的方程.

分析 (1)由x=my+6与抛物线y2=4x得y2-4my-24=0,利用$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2,求$\overrightarrow{OA}$•$\overrightarrow{OB}$;
(2)S△OAB=$\frac{1}{2}$|OM|•|y1-y2|=3$\sqrt{16{m}^{2}+96}$=12$\sqrt{{m}^{2}+6}$=12$\sqrt{10}$,求出m,即可求直线l的方程.

解答 解:(1)设直线l的方程为x=my+6,A(x1,y1),B(x2,y2),
由x=my+6与抛物线y2=4x得y2-4my-24=0,显然△>0,
y1+y2=4m,y1y2=-24,x1x2=36
可得$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=12.…(6分)
(2)S△OAB=$\frac{1}{2}$|OM|•|y1-y2|=3$\sqrt{16{m}^{2}+96}$=12$\sqrt{{m}^{2}+6}$=12$\sqrt{10}$,
∴m2=4,m=±2.
那么直线l的方程为x+2y-6=0和x-2y-6=0…(12分)

点评 本题考查直线与抛物线的位置关系,考查向量知识的运用,考查三角形面积的计算,正确运用韦达定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若sin(3π-α)=$\sqrt{2}$sin(2π+β),$\sqrt{3}$cos(-α)=-$\sqrt{2}$cos(π+β),且0<α<β<π,则sinα•sinβ=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{\begin{array}{l}(2x-{x^2}){e^x},x≤0\\-{x^2}+6x+1,x>0\end{array}\right.$,g(x)=f(x)+m,若函数g(x)恰有三个不同零点,则实数m的取值范围为(  )
A.(1,10)B.(-10,-1)C.$(0,\frac{{2\sqrt{2}+2}}{{{e^{\sqrt{2}}}}})$D.$(-10,\frac{{2\sqrt{2}+2}}{{{e^{\sqrt{2}}}}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设a,b都为正实数且a+b=1,则$\frac{a^2}{a+1}+\frac{b^2}{b+2}$的最小值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等差数列{an}的前n项和为Sn,若S8=3,则a2+a3+a6+a7=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在一次试验中,测得(x,y)的四组值分别是A(1,1.5),B(2,3),C(3,4),D(4,5.5),则y
与x之间的回归直线方程为(  )
A.$\hat y=x+1$B.$\hat y=x+2$C.$\hat y=2x+1$D.$\hat y=x-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.$lg\frac{1}{4}-lg25+$log24=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的是(  )
A.$y=\frac{-2}{x}$B.f(x)=x2+1C.$y=x+\frac{1}{x}$D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.x为实数,[x]表示不超过x的最大整数,若函数{x}=x-[x],则方程2016x+$\{x\}-\frac{1}{2016}$=0的实数解的个数是2.

查看答案和解析>>

同步练习册答案