| A. | (4,+∞) | B. | [4,+∞) | C. | [3$\sqrt{2}$,+∞) | D. | (3$\sqrt{2}$,+∞) |
分析 作出不等式组对应的平面区域,利用目标函数的最大值确定最优解,联立方程组求得最优解的坐标,代入目标函数求得mn=2,结合已知得到m的范围,然后利用函数单调性即可得到结论.
解答
解:作出不等式组对应的平面区域如图,
由z=mnx+y(m>n>0),
得y=-mnx+z(m>n>0),
则由图象可知当直线y=-mnx+z经过点C时,截距最大,此时z最大为10,
由$\left\{\begin{array}{l}{2x-y+2=0}\\{4x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=6}\end{array}\right.$.
即C(2,6),此时2mn+6=10,
即mn=2,
∵m>n>0,∴m$>\sqrt{2}$.
∴2m+n=2m+$\frac{2}{m}$=2(m+$\frac{1}{m}$)$>2(\sqrt{2}+\frac{\sqrt{2}}{2})=3\sqrt{2}$.
∴2m+n的取值范围为($3\sqrt{2},+∞$).
故选:D.
点评 本题主要考查线性规划的应用以及利用函数单调性求函数最值,利用数形结合是解决本题的关键,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 由圆的性质类比推出球的有关性质 | |
| B. | 金属能导电,金、银、铜是金属,所以金、银、铜能导电 | |
| C. | 某次考试小明的数学成绩是满分,由此推出其各科成绩都是满分 | |
| D. | 由等边三角形、等腰直角三角形的内角和是180°,归纳出所有三角形的内角和都是180° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,0] | B. | [-2,0) | C. | [0,2] | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{3}$单位 | B. | 向右平移$\frac{π}{3}$单位 | C. | 向左平移$\frac{π}{6}$单位 | D. | 向右平移$\frac{π}{6}$单位 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com