精英家教网 > 高中数学 > 题目详情
已知函数,其导函数的图象经过点,如图所示.
(1)求的极大值点;
(2)求的值;
(3)若,求在区间上的最小值.
(1);(2);(3)当时,;当时,;当时,.

试题分析:(1)由导函数图象可知:在区间单调递增,在区间单调递减,所以,的极大值点为 ;(2)对原函数进行求导,.令,解得
,而时,与已知矛盾,.(3)由(1)知,在区间单调递增,在区间单调递减,则给定的要按进行讨论.
试题解析:(1)由导函数图象可知:在区间单调递增,在区间单调递减,
所以,的极大值点为                             3分
(2)                      2分
                                   3分
时,与已知矛盾,              5分
(3)
①当,即时,在区间上单调递减
                    2分
②当,即时,在区间上单调递减,在区间
上单调递增,             4分
③当时,在区间上单调递增,
                       6分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)
(1)设(弧度),将绿化带总长度表示为的函数
(2)试确定的值,使得绿化带总长度最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)试判断函数的单调性;  
(2)设,求上的最大值;
(3)试证明:对任意,不等式都成立(其中是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的单调区间;
(2)若上恒成立,求所有实数的值;
(3)对任意的,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数在点(1,1)处的切线方程;
(2)若在y轴的左侧,函数的图象恒在的导函数图象的上方,求k的取值范围;
(3)当k≤-l时,求函数在[k,l]上的最小值m。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

经销商用一辆型卡车将某种水果运送(满载)到相距400km的水果批发市场.据测算,型卡车满载行驶时,每100km所消耗的燃油量(单位:)与速度(单位:km/h)的关系近似地满足,除燃油费外,人工工资、车损等其他费用平均每小时300元.已知燃油价格为7.5元/L.
(1)设运送这车水果的费用为(元)(不计返程费用),将表示成速度的函数关系式;
(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求f(x)的反函数的图象上图象上,点(1,0)处的切线方程;
(2)证明: 曲线y =" f" (x)与曲线有唯一公共点.
(3)设a<b, 比较的大小, 并说明理由.   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对任意实数,定义运算,设,则的值是(    )
A.B.C.D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是R上的单调增函数,则的取值范围是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案