精英家教网 > 高中数学 > 题目详情
已知函数.
(1)试判断函数的单调性;  
(2)设,求上的最大值;
(3)试证明:对任意,不等式都成立(其中是自然对数的底数).
(1)函数上单调递增,在上单调递减;
(2)上的最大值为
(3) 证明过程详见试题解析.

试题分析:(1)先对函数求导,令导函数为0,即可求得函数在上单调递增,在上单调递减. (2)结合函数的单调性,分时,时,三种情况进行讨论,即可求上的最大值;(3) 把证明过程转化为恒成立问题即可.
试题解析:(1)解:(1)函数的定义域是.由已知
,得
因为当时,;当时,
所以函数上单调递增,在上单调递减.
(2)由(1)可知当,即时,上单调递增,所以
时,上单调递减,所以
,即时,
综上所述,
(3)由(1)知当.所以在时恒有,即,当且仅当时等号成立.因此对任意恒有.因为,所以,即.因此对任意,不等式
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数定义在上,,导函数
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率与日产量(件)之间近似地满足关系式(日产品废品率).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润日正品赢利额日废品亏损额)
(1)将该车间日利润(千元)表示为日产量(件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其导函数的图象经过点,如图所示.
(1)求的极大值点;
(2)求的值;
(3)若,求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数
(Ⅰ)当时,
(1)若,求函数的单调区间;
(2)若关于的不等式在区间上有解,求的取值范围;
(Ⅱ)已知曲线在其图象上的两点)处的切线分别为.若直线平行,试探究点与点的关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

巳知函数,其中.
(1)若是函数的极值点,求的值;
(2)若在区间上单调递增,求的取值范围;
(3)记,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P(1,2)是曲线y=2x2上一点,则P处的瞬时变化率为   (    )
A.2B.4 C.6D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,且,则( )
A.0B.-1C.3D.-6

查看答案和解析>>

同步练习册答案