精英家教网 > 高中数学 > 题目详情
8.求证:
(1)C${\;}_{n}^{0}$+7C${\;}_{n}^{1}$+72C${\;}_{n}^{2}$+…+7nC${\;}_{n}^{n}$=23n
(2)2n-C${\;}_{n}^{1}$•2n-1+C${\;}_{n}^{2}$•2n-2+…+(-1)n-1C${\;}_{n}^{n-1}$•2+(-1)n=1.

分析 (1)由条件利用二项式展开式的通项公式、二项式定理化简等式的左边,即可证得结论.
(2)由条件利用二项式展开式的通项公式、二项式定理化简等式的左边,即可证得结论.

解答 (1)证明:∵C${\;}_{n}^{0}$+7C${\;}_{n}^{1}$+72C${\;}_{n}^{2}$+…+7nC${\;}_{n}^{n}$=(1+7)n=8n=23n ,∴C${\;}_{n}^{0}$+7C${\;}_{n}^{1}$+72C${\;}_{n}^{2}$+…+7nC${\;}_{n}^{n}$=23n 成立.
(2)证明:∵2n-C${\;}_{n}^{1}$•2n-1+C${\;}_{n}^{2}$•2n-2+…+(-1)n-1C${\;}_{n}^{n-1}$•2+(-1)n =(2-1)n=1,
∴2n-C${\;}_{n}^{1}$•2n-1+C${\;}_{n}^{2}$•2n-2+…+(-1)n-1C${\;}_{n}^{n-1}$•2+(-1)n=1.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.y=cos3(2x+3)的导数是-6cos2(2x+3)sin(2x+3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C的圆心在x轴正半轴上,半径为5,且与直线4x+3y+17=0相切.
(1)求圆C的方程;
(2)设点P(-1,$\frac{3}{2}$),过点p作直线l与圆C交于A,B两点,若AB=8,求直线l的方程;
(3)设P是直线x+y+6=0上的点,过P点作圆C的切线PA,PB,切点为A,B.求证:经过A,P,C三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知cosθ=$\frac{1}{4}$,则sin4θ+cos4θ=$\frac{113}{33568}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在[1,+∞)上的函数f(x)满足f(x+2)=f(x)+x,且当x∈[0,2)时,f(x)=x,则f(101)=2501.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据数列{an}的通项公式an=$\frac{cosnπ}{2}$,写出它的前4项及第2n项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点,将△ADE沿DE折起,点A,F折起后分别为点A′,F′,得到四棱锥A′-BCDE.给出下列几个结论:
①A′,B,C,F′四点共面;
②EF'∥平面A′BC;
③若平面A′DE⊥平面BCDE,则CE⊥A′D;
④四棱锥A′-BCDE体积的最大值为$\sqrt{2}$.
其中正确的是②③(填上所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设不等式组$\left\{\begin{array}{l}{x+y≤\sqrt{2}}\\{x-y≥-\sqrt{2}}\\{y≥0}\end{array}\right.$所表示的区域为M,函数y=$\sqrt{1-{x}^{2}}$的图象与x轴所围成的区域为N,向M内随机投一个点,则该点落在N内的概率为(  )
A.$\frac{2}{π}$B.$\frac{π}{4}$C.$\frac{π}{8}$D.$\frac{π}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的焦点到渐近线的距离为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案