精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,O为坐标原点,已知两定点A(1,0),B(0,-1)动点P满足:,求点P的轨迹方程。

所以点P的轨迹方程为…………12
略       
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知曲线C上任意一点M到点F(0,1)的距离比它到直线 的距离小1.
(1)求曲线C的方程;
(2)过点当△AOB的面积为时(O为坐标原点),求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
x
3
—2
4


y

0
—4

-
 
(1)求的标准方程;
(2)设直线与椭圆交于不同两点,请问是否存在这样的
直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知两定点满足条件的点P的轨迹是曲线E,直线与曲线E交于A、B两点。
(1)求的取值范围;
(2)如果且曲线E上存在点C,使,求的值及点C的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设圆,将曲线上每一点的纵坐标压缩到原来的,对应的横坐标不变,得到曲线C.经过点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),交曲线C于A、B两个不同点.
(1)求曲线的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径百公里)的中心为一个焦点的椭圆. 如图,已知探测器的近火星点(轨道上离火星表面最近的点)到火星表面的距离为百公里,远火星点(轨道上离火星表面最远的点)到火星表面的距离为800百公里. 假定探测器由近火星点第一次逆时针运行到与轨道中心的距离为百公里时进行变轨,其中分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知,椭圆C的方程为分别为椭圆C的两个焦点,设为椭圆C上一点,存在以为圆心的外切、与内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作斜率为的直线与椭圆C相交于AB两点,与轴相交于点D,若
的值;
(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T
的椭圆的切线方程为=1.”利用上述结论,解答下面问题:
已知点Q是直线上的动点,过点Q作椭圆C的两条切线QMQN
MN为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

经过一定圆外一定点,并且与该圆外切的动圆圆心的轨迹是             (     )
A.圆B.椭圆C.直线D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从极点作圆,则各弦中点的轨迹方程为__________.

查看答案和解析>>

同步练习册答案