精英家教网 > 高中数学 > 题目详情
18.在等差数列{an}中,a9=$\frac{1}{2}$a12+3,则数列{an}的前11项和S11=(  )
A.24B.48C.66D.132

分析 推导出a1+5d=6,由此能求出数列{an}的前11项和S11的值.

解答 解:在等差数列{an}中,a9=$\frac{1}{2}$a12+3,
∴${a}_{1}+8d=\frac{1}{2}({a}_{1}+11d)+3$,
解a1+5d=6,
∴数列{an}的前11项和S11=$\frac{11}{2}$(a1+a11)=11(a1+5d)=11×6=66.
故选:C.

点评 本题考查数列的前11项和的求法,是基础题,解时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求值:
(1)(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-(2$\sqrt{3}$-π)0-(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+0.25${\;}^{-\frac{3}{2}}$;
(2)已知0<x<1,且x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(文科)定义:若各项为正实数的数列{an}满足${a_{n+1}}=\sqrt{a_n}(n∈{N^*})$,则称数列{an}为“算术平方根递推数列”.
已知数列{xn}满足${x_n}>0,n∈{N^*}$,且${x_1}=\frac{9}{2}$,点(xn+1,xn)在二次函数f(x)=2x2+2x的图象上.
(1)试判断数列{2xn+1}(n∈N*)是否为算术平方根递推数列?若是,请说明你的理由;
(2)记yn=lg(2xn+1)(n∈N*),求证:数列{yn}是等比数列,并求出通项公式yn
(3)从数列{yn}中依据某种顺序自左至右取出其中的项${y_{n_1}},{y_{n_2}},{y_{n_3}},…$,把这些项重新组成一个新数列{zn}:${z_1}={y_{n_1}},{z_2}={y_{n_2}},{z_3}={y_{n_3}},…$.
 若数列{zn}是首项为${z_1}={(\frac{1}{2})^{m-1}}$,公比为$q=\frac{1}{2^k}(m,k∈{N^*})$的无穷等比数列,且数列{zn}各项的和为$\frac{1}{3}$,求正整数k、m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.判断下列命题正确的是②③④
①若$\overrightarrow a$•$\overrightarrow c$=$\overrightarrow b$•$\overrightarrow c$($\overrightarrow c$≠$\overrightarrow 0$),则$\overrightarrow a$=$\overrightarrow b$;
②已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(3,-4),则$\overrightarrow a$在$\overrightarrow b$上的投影为-$\frac{6}{5}$;
③数列{an},{bn}均为等差数列,前n项和分别为Sn,Tn.若$\frac{S_n}{T_n}$=$\frac{3n-2}{5n+1}$,则$\frac{a_5}{b_5}$=$\frac{25}{46}$;
④|$\overrightarrow{AB}$|$\overrightarrow{PC}$+|$\overrightarrow{BC}$|$\overrightarrow{PA}$+|$\overrightarrow{CA}$|$\overrightarrow{PB}$=$\overrightarrow 0$⇒P为△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2-2x+2+lnx(a>0)
(1)若f(x)在其定义域上是单调增函数,求实数a的取值集合;
(2)当a=$\frac{3}{8}$时,函数y=f(x)在[en,+∞](n∈Z)有零点,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=a+$\frac{h(x)-3sinx}{h(x)}$(x∈R)存在最大值M和最小值N,若函数h(x)是R上的偶函数,且M+N=8.则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在三角形ABC中,a,b,c分别是角A,B,C的对边,若b2=ac,且a2+bc=ac+c2
(Ⅰ)求角A的大小.
(Ⅱ)求$\frac{bsinB}{c}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
(Ⅰ) 求证:PC∥平面EBD;
(Ⅱ) 求证:BC⊥PC.
(Ⅲ) 若:PD=DA=2,求:三棱锥E-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{m}$=(2,4),|$\overrightarrow{n}$|=$\sqrt{5}$,若$\overrightarrow{m}$,$\overrightarrow{n}$间的夹角为$\frac{π}{3}$,则|2$\overrightarrow{m}$-3$\overrightarrow{n}$|=$\sqrt{65}$.

查看答案和解析>>

同步练习册答案