精英家教网 > 高中数学 > 题目详情
8.求值:
(1)(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-(2$\sqrt{3}$-π)0-(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+0.25${\;}^{-\frac{3}{2}}$;
(2)已知0<x<1,且x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$.

分析 (1)利用指数幂的运算性质即可得出.
(2)由题意0<x<1,且x+x-1=3,判断x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$的值为负,采用两边平方后,再开方可得答案.

解答 解:(1)(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-(2$\sqrt{3}$-π)0-(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+0.25${\;}^{-\frac{3}{2}}$;
原式=$\sqrt{\frac{25}{9}}$-1-$(\frac{64}{27})^{-\frac{2}{3}}$+$(\frac{1}{4})^{-\frac{3}{2}}$
=$\frac{5}{3}$-1-$(\frac{27}{64})^{\frac{2}{3}}$+${4}^{\frac{3}{2}}$
=$\frac{2}{3}$-$\frac{9}{16}$+8
=8$\frac{5}{48}$
(2)由题意:0<x<1,
∴${x}^{\frac{1}{2}}-{x}^{-\frac{1}{2}}$<0
所以:(${x}^{\frac{1}{2}}-{x}^{-\frac{1}{2}}$)2=x+x-1-2.
∵x+x-1=3
∴(${x}^{\frac{1}{2}}-{x}^{-\frac{1}{2}}$)2=1
故得${x}^{\frac{1}{2}}-{x}^{-\frac{1}{2}}$=-1

点评 本题考查了指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a=2,A=45°,若此三角形有两解,则b的取值范围是(  )
A.(2,2$\sqrt{2}$)B.(2,+∞)C.(-∞,2)D.($\frac{1}{2}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=(x-a)(x-b)(x-c),(a、b、c是两两不等的常数),则f′(b)=(b-a)(b-c).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设由不等式$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}}\right.$表示的平面区域为A,若直线kx-y+1=0(k∈R)平分A的面积,则实数k的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行如图所示程序框图,则输出的S为(  )
A.10B.9C.8D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设A={x|x2+x-6=0},B={x|ax+1=0},满足A?B,则a取值的集合是(  )
A.{$-\frac{1}{2},_{\;}^{\;}\frac{1}{3}$}B.{$-\frac{1}{2}$}C.{$\frac{1}{3}$}D.{$0,-\frac{1}{2},\frac{1}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图为由三棱柱切割而得到的几何体的三视图,则该几何体的体积为(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.数列{an}中,如果an=2n,那么这个数列是(  )
A.公差为2的等差数列B.公差为3的等差数列
C.首项为3的等比数列D.首项为1的等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等差数列{an}中,a9=$\frac{1}{2}$a12+3,则数列{an}的前11项和S11=(  )
A.24B.48C.66D.132

查看答案和解析>>

同步练习册答案