精英家教网 > 高中数学 > 题目详情
20.在△ABC中,a=2,A=45°,若此三角形有两解,则b的取值范围是(  )
A.(2,2$\sqrt{2}$)B.(2,+∞)C.(-∞,2)D.($\frac{1}{2}$,$\sqrt{2}$)

分析 利用正弦定理和b和sinB求得b和sinB的关系,利用A求得B+C;要使三角形两个这两个值互补先看若B≤45°,则和B互补的角大于135°进而推断出A+B>180°与三角形内角和矛盾;进而可推断出45°<B<135°若B=90°,这样补角也是90°,一解不符合题意进而可推断出sinB的范围,利用sinB和b的关系求得b的范围.

解答 解:∵a=2,A=45°,
∴由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=2\sqrt{2}$,解得b=2$\sqrt{2}$sinB,
∵B+C=180°-45°=135°,由B有两个值,则这两个值互补,
若B≤45°,
则和B互补的角大于135°,这样A+B>180°,不成立,
∴45°<B<135°,
又若B=90°,这样补角也是90°,一解,
所以$\frac{\sqrt{2}}{2}$<sinB<1,
b=2$\sqrt{2}$sinB,
所以2<b<2$\sqrt{2}$.
则b的取值范围是为:(2,2$\sqrt{2}$).
故选:A.

点评 本题主要考查了正弦定理的应用,解三角形与不等式的综合,考查了学生综合分析问题和基本的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设等差数列{an}的前n项和为Sn,且S5=13,S10=63,则S15等于(  )
A.90B.100C.120D.150

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=ex-x的最小值是 (  )
A.0B.1C.-1D.e-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f:N*→N*,函数y=f(k)是定义在N*上的增函数,且f(f(k))=3k,则f(9)=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则把函数f(x)的图象向左平移$\frac{π}{6}$后得到的函数图象的解析式是(  )
A.y=2sin2xB.y=2sin(2x-$\frac{π}{3}$)C.y=2sin(2x-$\frac{π}{6}$)D.y=2sin(x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a=2${\;}^{\frac{1}{3}}}$,b=ln2,c=log5sin$\frac{π}{3}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,若$\frac{sin(A-B)}{sin(A+B)}$=$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$,则△ABC的形状一定是等腰或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一个半径为1的小球在一个内壁棱长为5的正方体密闭容器内可以向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是(  )
A.100B.96C.54D.92

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求值:
(1)(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-(2$\sqrt{3}$-π)0-(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+0.25${\;}^{-\frac{3}{2}}$;
(2)已知0<x<1,且x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

同步练习册答案